Infrared Video Enhancement Using Contrast Limited Adaptive Histogram Equalization and Fuzzy Logic

Document Type : Original Article

Authors

1 Electronics & Communication Dept. Faculty of Eletronic Engineering, Menoufia University Egypt

2 Electronics & Communication Dept. Faculty of Shoubra Engineering, BanhaUniversity Egypt

3 Department of Automatic Control Faculty of Eletronic Engineering, Menoufia University Egypt

4 Computer Science & Engineering Dept. Faculty of Eletronic Engineering, Menoufia University Egypt

Abstract

Infrared image enhancement is a challenging task due to several factors such as low dynamic range, noise and non-uniformity effect. The non-uniformity is a time-dependent noise that appears owing to the lack of sensor equalization. This paper presents two proposed approaches for infrared video enhancement. The first proposed approach depends on histogram matching. The second one depends on contrast limited adaptive histogram equalization (CLAHE) and fuzzy logic. The performance metrics of average gradient, entropy, contrast improvement factor and Sobel edge magnitude are used for evaluating the obtained results.

Keywords


[1]     M.C. Larcipretea, S. Paoloni,  R. Li Voti, Y.S. Gloy, C. Sibilia, Infrared radiation characterization of several stainless steel textiles in the 3.5–5.1 μm infrared range,  International Journal of Thermal Sciences 132 (2018) 168–173
[2]     Z. Zhang, H. Zhang, T. Liu, Study on body temperature detection of pig based on infrared technology: A review, Artificial Intelligence in Agriculture 1 (2019) 14–26
[3]     J. Ma, Y. Ma, C. Li, Infrared and visible image fusion methods and applications: A survey, Information Fusion 45 (2019) 153–178
[4]     ShiQiu , Y. Tang ,Y. Du, S. Yang, The infrared moving target extraction and fast video reconstruction algorithm, Infrared Physics & Technology(2018),  doi: https://doi.org/10.1016/j.infrared.2018.11.025
[5]     A. Ulhaq, X. Yin, J. He, Y. Zhang, FACE: Fully Automated Context Enhancement for night-time video Sequences, http://dx.doi.org/10.1016/j.jvcir.2016.08.008
[6]     Y. Zhao, H. Pan, C.Du, Y. Peng, Y. Zheng, Bilateral two-dimensional least mean square filter for infrared small target detection,  Infrared Physics & Technology 65 (2014) 17–23
[7]     N. Liu, X. Chen, Infrared image detail enhancement approach based on improved joint bilateral filter, Infrared Physics & Technology 77 (2016) 405–413
[8]     T.Yuan, Lo, K. Swee, Sim and C.Ping, Tso, Infrared image enhancement using adaptive trilateral contrast enhancement, Pattern Recognition Letters(2014), doi: 10.1016/j.patrec.2014.09.011
[9]     H. I. Ashiba & H. M. Mansour & H. M. Ahmed & M. I. Dessouky & M. F. El-Kordy & O. Zahran & Fathi E. Abd El-Samie,  Enhancement of IR images using histogram processing and the Undecimated additive wavelet transform, Multimedia Tools and Applications, https://doi.org/10.1007/s11042-018-6545-9
[10]  B. Caoa, Y. Dua, D.Xub, H. Lia, Q. Liua, An improved histogram matching algorithm for the removal of striping noise in optical remote sensing imagery, Optik 126 (2015) 4723–4730
[11]  D. Shen, Image registration by local histogram matching, Pattern Recognition 40 (2007) 1161 – 1172, doi:10.1016/j.patcog.2006.08.012
[12]  N.M. Sasi, V. K. Jayasree, Contrast Limited Adaptive Histogram Equalization for Qualitative Enhancement of Myocardial Perfusion Images,  Engineering, 2013, 5, 326-331, http://dx.doi.org/10.4236/eng.2013.510B066
[13]  K.Liang, Y.Ma, Y. Xie, B.Zhou, R.Wang, A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization, Infrared Physics & Technology 55 (2012) 309–315
[14]  Z. Xu, X. Liu, X. Chen, Fog Removal from Video Sequences Using Contrast Limited Adaptive Histogram Equalization, 978-1-4244-4507-3/09/$25.00 ©2009 IEEE
[15]  G. Yadav ,S. Maheshwari, A. Agarwal, Contrast Limited Adaptive Histogram Equalization Based Enhancement For Real Time Video System, 978-1-4799-3080-7/14/$31.00_c 2014 IEEE
[16]  H. Cai, L. Zhuo, X. Chen, W. Zhang,  Infrared and visible image fusion based on BEMSD and improved fuzzy set, Infrared Physics and Technology 98 (2019) 201211, https://doi.org/10.1016/j.infrared.2019.03.013
[17]  A. A. Ein-shoka, O. S. Faragallah, Quality enhancement of infrared images using dynamic fuzzy histogram equalization and high pass adaptation in DWT, Optik 160 (2018) 146–158, https://doi.org/10.1016/j.ijleo.2017.12.056
[18]  A. K. Gupta, S. S. Chauhan, M. Shrivastava,  Low Contrast Image Enhancement Technique By Using Fuzzy Method, International Journal of Engineering Research and General Science Volume 4, Issue 2, March-April, 2016 ISSN 2091-2730
[19]  X. Yu, Fuzzy Infrared Image Segmentation Based on Multilayer Immune Clustering Neural Network, Optik - International Journal for Light and Electron Optics,  doi: http://dx.doi.org/doi:10.1016/j.ijleo.2017.05.01
Volume 28, ICEEM2019-Special Issue
ICEEM2019-Special Issue: 1st International Conference on Electronic Eng., Faculty of Electronic Eng., Menouf, Egypt, 7-8 Dec.
2019
Pages 231-236