Efficient Noise Reduction in Optical Gyroscope Signals

Document Type : Original Article

Authors

Communication Department Faculty of Electronic Engineering El-Menoufia University El-Menoufia, Egypt

Abstract

 Gyroscopes are sensors that are used for motion measurement. They are generally used to measure rotation rate of moving equipment. Gyroscope signals suffer from two types of noise. There is external noise due to environmental disturbances and internal noise due to internal device operation. Different filtering techniques can be employed to reduce this noise. Kalman filtering is one of these techniques that have been used. This paper presents a study of wavelet-based filtering technique and compares its results with Kalman filtering results. Results show the superiority of using the wavelet-based filtering technique over the Kalman filtering technique. 

Keywords


[1]     W.Andrén, and E. Hjertberg. "Gyro Stabilization of a Positioning Unit", 2019.
[2]      D. Xia, C. Yu and L. Kong. "The development of micromachined gyroscope structure and circuitry technology." Sensors 14(1): 1394-1473, 2014.
[3]      S. Mitani, K. Nigo, S. Karasawa, H. Endo and T. Takahata. “Interferometric multi-core fiber optic gyroscope under temperature changing environment”. International Conference on Space Optics—ICSO 2018, International Society for Optics and Photonics. 2019.
[4]      H. C. Lefevre, “The fiber-optic gyroscope,” Artech house, 2014.
[5]      C. H. Hua, R. Zhang, and M. H. Zhang, “Filtering of long-term dependent fractal noise in fiber optic gyroscope,” Journal of system Engineering and Electronics 21 pp.1041-1045, 2010.
[6]      D. Wang, X. Xu, T. Zhang, Y. Zhu and J. Tong. "An EMD-MRLS de-noising method for fiber optic gyro Signal." Optik 183: 971-987. 2019.
[7]     C. Hua, Z. Ren and M. Zhang. Filtering of long-term dependent fractal noise in fiber optic gyroscope." Journal of Systems Engineering and Electronics 21(6): 1041-1045, 2010.
[8]      W. Gao, D. Fang, H. Wang, Y. Wang and H. Zhang. DAVAR method for random noise signal process of FOG based on optimal window. AIP Conference Proceedings, AIP Publishing, 2019.
[9]     Q. Liang, Y. Litvinenko and O. Stepanov. "A Solution to the Attitude Problem Using Two Rotation Units of Micromechanical Gyroscopes." IEEE Transactions on Industrial Electronics, 2019.
[10]  D.S Bayard, S.R Ploen, “High accuracy inertial sensors from inexpensive components,” US patent 0187623, 2003.
[11]  Chen Shufen, Zhu Yong, Qin Bingkun et al, “Theoretical analysis of noise on IFOG with integrated optics chip,” Optical Technique,29(3):8~10, 2003.
[12]  Huang Zhangyong, “Photoelectronic device and component using in optical fibre communication,” Beijing University Posts and Telecommunications Press, 2001.
[13]  N. El-Sheimy, Naser and Noureldin, “Wavelet Based De- Noising for IMU Alignment,” IEEE Aerospace and Electronic Systems Magazine, vol. 19, pp. 32– 39. 2004.
[14]  Fuqiang Liu, Fanming Liu, Wenjing Wang and Bo Xu, “MEMS Gyro’s Output Signal Denoising Based on Wavelet Analysis,” Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China, pp.5 – 8, August 2007.
[15]  G. Sheng, G. Gao and B. Zhang. "Application of Improved Wavelet Thresholding Method and an RBF Network in the Error Compensating of an MEMS Gyroscope." Micromachines 10(9): 608, 2019.
[16]  LAWRENCE “The Principles of Mechanical Gyroscopes,” 1998
 
 
 
[17]  University of Victoria. Microelectromechanical systems, 2015.
http://www.engr.uvic.ca/_mech466/MECH466-Lecture-1.pdf(lastac-cessed:January11,2016).
[18]   Changjoo Kim, Woon Tahk Sung, Sangkyung Sung, Sukchang Yun, and Young Jae Lee, “On the Mode- Matched Control of MEMS Vibratory Gyroscope via Phase- Domain Analysis and Design,” IEEE / ASME Transactions on Mechatronics, vol. 14, no. 4, August 2009.
[19]  Z. Guo, Z. Yang, L. Lin, Q. Zhao, J. Cui, X. Chi and G. Yan. “Decoupled comb capacitors for microelectromechanical tuning-fork gyroscopes,” IEEE Electron Device Letters 31(1): pp.26-28,2010.
[20]  S. W. Yoon, “Vibration-induced errors in MEMS tuning fork gyroscopes.” Sensors and Actuators A: Physical, pp. 32-44, 2012.
[21]  G. Sagnac, “L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme,” Compte-renduz à l’Académie des Sciences, vol. 95, 1913, pp. 708-10.
[22]   E. J. Post, Sagnac effect, “Rev. Modern Phys.,” vol. 39, pp. 475-94, 1967.
[23]  LAWRENCE, “A.: Modern Inertial Technology,” Second Edition, Springer-Verlag New York, 1998.
[24]  L. Wang, Y. Hao, F. Wang, “Calibration of Low Cost MEMS Inertial          Measurement Unit for an FPGA-based Navigation System,” IEEE International Conference on Information and Automation, pp. 181-186, June 2011.
[25]  H. Qian, Q. Xia, et al., “On modeling of random drift of MEMS gyroscope and design of Kalman filter,” International Conference on Mechatronics and Automation (ICMA), pp. 4355-4360, August 2009.
[26]  I. Daubechies, “Ten Lectures on Wavelets”, Society for Industrial and Applied Mathematics,” ISBN 0-89871-274-2, 1992.
S. L. Sabat, P. Rangababu, K. Karthik, G. Krishhnaprasad and J. Nayak. “System on chip implementation of 1-D Wavelet transform based denoising of Fiber Optic Gyroscope signal on FPGA,” Annual IEEE India Conference, 2011
Volume 28, ICEEM2019-Special Issue
ICEEM2019-Special Issue: 1st International Conference on Electronic Eng., Faculty of Electronic Eng., Menouf, Egypt, 7-8 Dec.
2019
Pages 201-208