Cancelable Speaker Identification Based on Inverse Filter

Document Type : Original Article

Authors

1 Department of Electronics and Electrical Communications Engineering Faculty of Electronic Engineering Menoufia University: Menouf, Egypt

2 Department of Electronics and Electrical Communications Engineering Faculty of Engineering Cairo University: Cairo , Egypt

Abstract

 Nowadays, biometric systems have replaced the password or token based authentication systems in many fields to improve the security level. Biometric authentication systems automatically identify or verify a person using physical, biological, and behavioral characteristics. Unfortunately, these systems have suffered from hacking trials. This paper presents masking techniques for cancelable speaker identification. The basic concept is to use another version of the original speaker signal created through a masking techniques to keep the original signals safe and away from utilization in the system. The basic idea is adding some sort of noise to the speech signal and magnification of this noise by the proposed techniques. The proposed techniques are discrete wavelet transform (DWT), wavelet thresholding, Linear Minimum Mean Square Error (LMMSE) technique and invers filter. A comparison between these techniques is established using objective quality measures of speaker identification. Simulation results show good performance of the technique based on invers filter.

Keywords


[1]     S. Nakagawa, L. Wang and S. Ohtsuka, “Speaker Identification and Verification by Combining MFCC and Phase Information,” IEEE Transaction on Audio, Speech and Language Processing, Vol. 20, No. 4, May 2012, pp. 1085-1095. 
[2]     Reynolds, D. A. “An overview of automatic speaker recognition technology,” Proceedings IEEE international conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 4, pp. 4072–4075, 13–17 May 2002.
[3]     Furui, S. “An overview of speaker recognition technology”. The Kluwer International Series in Engineering and Computer Science, (1996), 355, 31–55.
[4]     A. K. Jain, A. A. Ross, and K. Nandakumar, “Introduction to Biometrics”, Springer, 2017.
[5]     S. Z. Li and A. K. Jain, “Handbook of Face Recognition”, 2nd ed. Springer, 2011.
[6]     M. J. Burge and K. W. Kevin, “Handbook of Iris Recognition”, Springer, 2013.
[7]     V. M. Patel, N. K. Ratha, and R. Chellappa, “Cancelable biometrics: a review,” IEEE Signal Process. Mag. 32, 54–65 (2015).
[8]     G. I. Davida, Y. Frankel, and B. J. Matt, “On enabling secure applications through off-line biometric identification,” in IEEE Symp. Security and Privacy, May 1998, pp. 148–157.
[9]     A. K. Jain, K. Nandakumar, and A. Nagar, “Biometric template security,” EURASIP J. Adv. Signal Process., vol. 2008, pp. 113:1–113:17, Jan. 2008.
[10]  N. K. Ratha, J. H. Connel, and R. Bolle, “Enhancing security and privacy in biometrics-based authentication systems,” IBM Syst. J., vol. 40, no. 3, pp. 614–634, 2001.
[11]  N. Ratha, S. Chikkerur, J. Connell, and R. Bolle, “Generating cancelable fingerprint templates,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 4, pp. 561–572, Apr. 2007.
[12]  R. M. Bolle, J. H. Connel, and N. K. Ratha, “Biometrics perils and patches,” Pattern Recogn., vol. 35, no. 12, pp. 2727–2738, 2002..
[13]  Farge, M., Kevlahan, N., Perrier, V., & Goirand, E. “Wavelets and turbulence”. IEEE, 84(4), 639–669, 1996.
[14]  A. Prochazka, J. Uhlir, P. J. W. Rayner and N. J. Kingsbury, Signal Analysis and Prediction. Birkhauser Inc., New York, 1998.
[15]  S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, “Regularized Super-Resolution Reconstruction of Images Using Wavelet Fusion,” Journal of Optical Engineering, Vol. 44, No. 9, 2005, SPIE.
[16]  S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, “Wavelet Fusion: A Tool to Break The Limits on LMMSE Image Super-Resolution,” International Journal of Wavelets, Multiresolution and Information Processing, Vol. 4, No.1, 2006, pp. 105–118, World-Scientific.
[17]  M. A. Abd El-Fattah, M. I. Dessouky, S. M. Diab and F. E. Abd El-Samie,, “Speech enhancement with an adaptive Wiener filter,” International Journal of Speech Technology, Vol. 17, No. 1, pp. 53–64, 2014.
[18]  S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Sallam, and F. E. Abd El-Samie, “Enhanced Wiener Restoration of Images Based on The Haar Wavelet Transform,” Proceedings of the URSI National Radio Science Conference (NRSC), Manssoura, Egypt, March 2001.
[19]  S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, and F. E. Abd El-Samie, “A New Technique For Enhanced Regularized Image Restoration,” Proceedings of the URSI National Radio Science Conference (NRSC), Alexandria, Egypt, March 2002.
[20]  S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Salam and F. E. Abd El-Samie, “Sectioned Implementation of Regularized Image Interpolation” Proceedings of the 46th Proceedings of IEEE MWSCAS, Cairo, Egypt, Dec. 2003.
[21]  S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, “Optimization of Image Interpolation as an Inverse Problem Using The LMMSE Algorithm,” Proceedings of the IEEE MELECON, pp. 247–250, Croatia, May 2004.
[22]  A. K. Jain, “Fast Inversion of Banded Toeplitz Matrices by Circular Decomposition” IEEE Trans. Acoustics, Speech and Signal Processing, Vol. ASSP-26, No. 2, pp. 121–126, April 1978.
[23]  H. C. Anderws and B. R. Hunt, Digital Image Restoration. Englewood Cliffs, NJ: Prentice- Hall, 1977.
 
Volume 28, ICEEM2019-Special Issue
ICEEM2019-Special Issue: 1st International Conference on Electronic Eng., Faculty of Electronic Eng., Menouf, Egypt, 7-8 Dec.
2019
Pages 133-137