[1] Statistics on Diabetes and Dabetic Retinopathy; The National Diabetes Information Clearinghouse (NDIC http://diabetes.niddk.nih.gov/dm/pubs/statistics/#Diagnosed20 (Access Date 25 may 2016).).
[2] Cassin, B. and Solomon, S. Dictionary of Eye Terminology. Gainesville, Florida: Triad Publishing Company, 1990.
[3] Amit B. Jain, Vadivelu Jaya Prakash and Muna Bhende. "Techniques of Fundus Imaging".J. Wang et al., A research on security and privacy issues for patient related data in medical organization system. Int. J. Secur. Appl., 287–298 (2013)
[4] https://www.diabetes.co.uk/diabetes-complications/background-retinopathy.html.
[5] https://oxfordmedicine.com/view/10.1093/med/9780199544967.001.0001/med-9780199544967-chapter-7.
[6] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[7] Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E., Laude, A.. Computer-aided diagnosis of diabetic retinopathy: Areview. Comput Biol Med 2013;43(12):2136–2155.
[8] Gardner, G., Keating, D., Williamson, T., Elliott, A.. Automatic detection of diabetic retinopathy using an artificial neural network: ascreening tool. Brit J Ophthalmol 1996;80(11):940–944.
[10] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[11] Acharya, U., Lim, C., Ng, E., Chee, C., Tamura, T.. Computer-based detection of diabetes retinopathy stages using digital fundus images. P I Mech Eng H 2009;223(5):545–553.
[12] 12. Adarsh, P., Jeyakumari, D.. Multiclass svm-based automated diagnosis of diabetic retinopathy. In: Communications and Signal Processing (ICCSP), 2013 International Conference on. IEEE; 2013, p. 206–210.
[13] 13. Piotr ,S., Majumdar, F., Caliva, B., Al-Diri, A.. Microaneurysm Detection using Fully Convolutional Neural Network. Computer Methods and Programs in Biomedicine (2018).
[14] Noushin, H., Pourreza, M., Masoudi, K.,Ghiasi Shirazi , E. Microaneurysm detection in fundus images using a two step convolutional neural network . BioMed Eng OnLine (2019(.
[15] Oscar, J., Arevaloa, F., A. Gonaleza aMindlab, Universidad N., de Colombia, B.. Convolutional network to detect exudates in eye fundus images of diabetic subjects. 12th International Symposium on Medical Information Processing and Analysis; 101600T (2017).
[16] Mark J. J. P. van Grinsven, B., Ginneken, C., B. Hoyng, T.. Fast convolutional neural network training using selective data sampling:Application to hemorrhage detection in color fundus image.IEEE Transactions on Medical Imaging.
[17] Kele , D., Feng, H.. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image. Selected Papers from the Second CCF Bioinformatics Conference (CBC (2017)).
[18] Harry,P.,Frans.,C. Convolutional Neural Networks for Diabetic Retinopathy. International Conference On Medical Imaging Understanding and Analysis 2016.
[19] Gabriel, G., Jhair ,G.. Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images.
[20] ARIA (Automatic Retinal Image Analysis) . Electronic material (Online). Available online at: https://github.com/petebankhead/ARIA.
[21] Structured analysis of the retina (STARE). Electronic material (Online). Available online at: http://www.ces.clemson.edu/∼ahoover/stare/ [referred 16.12.2009.
[22] Digital retinal images for vessel extraction (DRIVE). Electronic material (Online).Available online at: http://www.isi.uu.nl/Research/Databases/DRIVE/ [referred 16.12.2009].
.
[1] Statistics on Diabetes and Dabetic Retinopathy; The National Diabetes Information Clearinghouse (NDIC http://diabetes.niddk.nih.gov/dm/pubs/statistics/#Diagnosed20 (Access Date 25 may 2016).).
[2] Cassin, B. and Solomon, S. Dictionary of Eye Terminology. Gainesville, Florida: Triad Publishing Company, 1990.
[3] Amit B. Jain, Vadivelu Jaya Prakash and Muna Bhende. "Techniques of Fundus Imaging".J. Wang et al., A research on security and privacy issues for patient related data in medical organization system. Int. J. Secur. Appl., 287–298 (2013)
[4] https://www.diabetes.co.uk/diabetes-complications/background-retinopathy.html.
[5] https://oxfordmedicine.com/view/10.1093/med/9780199544967.001.0001/med-9780199544967-chapter-7.
[6] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[7] Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E., Laude, A.. Computer-aided diagnosis of diabetic retinopathy: Areview. Comput Biol Med 2013;43(12):2136–2155.
[8] Gardner, G., Keating, D., Williamson, T., Elliott, A.. Automatic detection of diabetic retinopathy using an artificial neural network: ascreening tool. Brit J Ophthalmol 1996;80(11):940–944.
[10] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[11] Acharya, U., Lim, C., Ng, E., Chee, C., Tamura, T.. Computer-based detection of diabetes retinopathy stages using digital fundus images. P I Mech Eng H 2009;223(5):545–553.
[12] 12. Adarsh, P., Jeyakumari, D.. Multiclass svm-based automated diagnosis of diabetic retinopathy. In: Communications and Signal Processing (ICCSP), 2013 International Conference on. IEEE; 2013, p. 206–210.
[13] 13. Piotr ,S., Majumdar, F., Caliva, B., Al-Diri, A.. Microaneurysm Detection using Fully Convolutional Neural Network. Computer Methods and Programs in Biomedicine (2018).
[14] Noushin, H., Pourreza, M., Masoudi, K.,Ghiasi Shirazi , E. Microaneurysm detection in fundus images using a two step convolutional neural network . BioMed Eng OnLine (2019(.
[15] Oscar, J., Arevaloa, F., A. Gonaleza aMindlab, Universidad N., de Colombia, B.. Convolutional network to detect exudates in eye fundus images of diabetic subjects. 12th International Symposium on Medical Information Processing and Analysis; 101600T (2017).
[16] Mark J. J. P. van Grinsven, B., Ginneken, C., B. Hoyng, T.. Fast convolutional neural network training using selective data sampling:Application to hemorrhage detection in color fundus image.IEEE Transactions on Medical Imaging.
[17] Kele , D., Feng, H.. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image. Selected Papers from the Second CCF Bioinformatics Conference (CBC (2017)).
[18] Harry,P.,Frans.,C. Convolutional Neural Networks for Diabetic Retinopathy. International Conference On Medical Imaging Understanding and Analysis 2016.
[19] Gabriel, G., Jhair ,G.. Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images.
[20] ARIA (Automatic Retinal Image Analysis) . Electronic material (Online). Available online at: https://github.com/petebankhead/ARIA.
[21] Structured analysis of the retina (STARE). Electronic material (Online). Available online at: http://www.ces.clemson.edu/∼ahoover/stare/ [referred 16.12.2009.
[22] Digital retinal images for vessel extraction (DRIVE). Electronic material (Online).Available online at: http://www.isi.uu.nl/Research/Databases/DRIVE/ [referred 16.12.2009].
.
[1] Statistics on Diabetes and Dabetic Retinopathy; The National Diabetes Information Clearinghouse (NDIC http://diabetes.niddk.nih.gov/dm/pubs/statistics/#Diagnosed20 (Access Date 25 may 2016).).
[2] Cassin, B. and Solomon, S. Dictionary of Eye Terminology. Gainesville, Florida: Triad Publishing Company, 1990.
[3] Amit B. Jain, Vadivelu Jaya Prakash and Muna Bhende. "Techniques of Fundus Imaging".J. Wang et al., A research on security and privacy issues for patient related data in medical organization system. Int. J. Secur. Appl., 287–298 (2013)
[4] https://www.diabetes.co.uk/diabetes-complications/background-retinopathy.html.
[5] https://oxfordmedicine.com/view/10.1093/med/9780199544967.001.0001/med-9780199544967-chapter-7.
[6] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[7] Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E., Laude, A.. Computer-aided diagnosis of diabetic retinopathy: Areview. Comput Biol Med 2013;43(12):2136–2155.
[8] Gardner, G., Keating, D., Williamson, T., Elliott, A.. Automatic detection of diabetic retinopathy using an artificial neural network: ascreening tool. Brit J Ophthalmol 1996;80(11):940–944.
[10] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[11] Acharya, U., Lim, C., Ng, E., Chee, C., Tamura, T.. Computer-based detection of diabetes retinopathy stages using digital fundus images. P I Mech Eng H 2009;223(5):545–553.
[12] 12. Adarsh, P., Jeyakumari, D.. Multiclass svm-based automated diagnosis of diabetic retinopathy. In: Communications and Signal Processing (ICCSP), 2013 International Conference on. IEEE; 2013, p. 206–210.
[13] 13. Piotr ,S., Majumdar, F., Caliva, B., Al-Diri, A.. Microaneurysm Detection using Fully Convolutional Neural Network. Computer Methods and Programs in Biomedicine (2018).
[14] Noushin, H., Pourreza, M., Masoudi, K.,Ghiasi Shirazi , E. Microaneurysm detection in fundus images using a two step convolutional neural network . BioMed Eng OnLine (2019(.
[15] Oscar, J., Arevaloa, F., A. Gonaleza aMindlab, Universidad N., de Colombia, B.. Convolutional network to detect exudates in eye fundus images of diabetic subjects. 12th International Symposium on Medical Information Processing and Analysis; 101600T (2017).
[16] Mark J. J. P. van Grinsven, B., Ginneken, C., B. Hoyng, T.. Fast convolutional neural network training using selective data sampling:Application to hemorrhage detection in color fundus image.IEEE Transactions on Medical Imaging.
[17] Kele , D., Feng, H.. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image. Selected Papers from the Second CCF Bioinformatics Conference (CBC (2017)).
[18] Harry,P.,Frans.,C. Convolutional Neural Networks for Diabetic Retinopathy. International Conference On Medical Imaging Understanding and Analysis 2016.
[19] Gabriel, G., Jhair ,G.. Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images.
[20] ARIA (Automatic Retinal Image Analysis) . Electronic material (Online). Available online at: https://github.com/petebankhead/ARIA.
[21] Structured analysis of the retina (STARE). Electronic material (Online). Available online at: http://www.ces.clemson.edu/∼ahoover/stare/ [referred 16.12.2009.
[22] Digital retinal images for vessel extraction (DRIVE). Electronic material (Online).Available online at: http://www.isi.uu.nl/Research/Databases/DRIVE/ [referred 16.12.2009].
.
[1] Statistics on Diabetes and Dabetic Retinopathy; The National Diabetes Information Clearinghouse (NDIC http://diabetes.niddk.nih.gov/dm/pubs/statistics/#Diagnosed20 (Access Date 25 may 2016).).
[2] Cassin, B. and Solomon, S. Dictionary of Eye Terminology. Gainesville, Florida: Triad Publishing Company, 1990.
[3] Amit B. Jain, Vadivelu Jaya Prakash and Muna Bhende. "Techniques of Fundus Imaging".J. Wang et al., A research on security and privacy issues for patient related data in medical organization system. Int. J. Secur. Appl., 287–298 (2013)
[4] https://www.diabetes.co.uk/diabetes-complications/background-retinopathy.html.
[5] https://oxfordmedicine.com/view/10.1093/med/9780199544967.001.0001/med-9780199544967-chapter-7.
[6] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[7] Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E., Laude, A.. Computer-aided diagnosis of diabetic retinopathy: Areview. Comput Biol Med 2013;43(12):2136–2155.
[8] Gardner, G., Keating, D., Williamson, T., Elliott, A.. Automatic detection of diabetic retinopathy using an artificial neural network: ascreening tool. Brit J Ophthalmol 1996;80(11):940–944.
[10] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[11] Acharya, U., Lim, C., Ng, E., Chee, C., Tamura, T.. Computer-based detection of diabetes retinopathy stages using digital fundus images. P I Mech Eng H 2009;223(5):545–553.
[12] 12. Adarsh, P., Jeyakumari, D.. Multiclass svm-based automated diagnosis of diabetic retinopathy. In: Communications and Signal Processing (ICCSP), 2013 International Conference on. IEEE; 2013, p. 206–210.
[13] 13. Piotr ,S., Majumdar, F., Caliva, B., Al-Diri, A.. Microaneurysm Detection using Fully Convolutional Neural Network. Computer Methods and Programs in Biomedicine (2018).
[14] Noushin, H., Pourreza, M., Masoudi, K.,Ghiasi Shirazi , E. Microaneurysm detection in fundus images using a two step convolutional neural network . BioMed Eng OnLine (2019(.
[15] Oscar, J., Arevaloa, F., A. Gonaleza aMindlab, Universidad N., de Colombia, B.. Convolutional network to detect exudates in eye fundus images of diabetic subjects. 12th International Symposium on Medical Information Processing and Analysis; 101600T (2017).
[16] Mark J. J. P. van Grinsven, B., Ginneken, C., B. Hoyng, T.. Fast convolutional neural network training using selective data sampling:Application to hemorrhage detection in color fundus image.IEEE Transactions on Medical Imaging.
[17] Kele , D., Feng, H.. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image. Selected Papers from the Second CCF Bioinformatics Conference (CBC (2017)).
[18] Harry,P.,Frans.,C. Convolutional Neural Networks for Diabetic Retinopathy. International Conference On Medical Imaging Understanding and Analysis 2016.
[19] Gabriel, G., Jhair ,G.. Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images.
[20] ARIA (Automatic Retinal Image Analysis) . Electronic material (Online). Available online at: https://github.com/petebankhead/ARIA.
[21] Structured analysis of the retina (STARE). Electronic material (Online). Available online at: http://www.ces.clemson.edu/∼ahoover/stare/ [referred 16.12.2009.
[22] Digital retinal images for vessel extraction (DRIVE). Electronic material (Online).Available online at: http://www.isi.uu.nl/Research/Databases/DRIVE/ [referred 16.12.2009].
.
[1] Statistics on Diabetes and Dabetic Retinopathy; The National Diabetes Information Clearinghouse (NDIC http://diabetes.niddk.nih.gov/dm/pubs/statistics/#Diagnosed20 (Access Date 25 may 2016).).
[2] Cassin, B. and Solomon, S. Dictionary of Eye Terminology. Gainesville, Florida: Triad Publishing Company, 1990.
[3] Amit B. Jain, Vadivelu Jaya Prakash and Muna Bhende. "Techniques of Fundus Imaging".J. Wang et al., A research on security and privacy issues for patient related data in medical organization system. Int. J. Secur. Appl., 287–298 (2013)
[4] https://www.diabetes.co.uk/diabetes-complications/background-retinopathy.html.
[5] https://oxfordmedicine.com/view/10.1093/med/9780199544967.001.0001/med-9780199544967-chapter-7.
[6] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[7] Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E., Laude, A.. Computer-aided diagnosis of diabetic retinopathy: Areview. Comput Biol Med 2013;43(12):2136–2155.
[8] Gardner, G., Keating, D., Williamson, T., Elliott, A.. Automatic detection of diabetic retinopathy using an artificial neural network: ascreening tool. Brit J Ophthalmol 1996;80(11):940–944.
[10] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[11] Acharya, U., Lim, C., Ng, E., Chee, C., Tamura, T.. Computer-based detection of diabetes retinopathy stages using digital fundus images. P I Mech Eng H 2009;223(5):545–553.
[12] 12. Adarsh, P., Jeyakumari, D.. Multiclass svm-based automated diagnosis of diabetic retinopathy. In: Communications and Signal Processing (ICCSP), 2013 International Conference on. IEEE; 2013, p. 206–210.
[13] 13. Piotr ,S., Majumdar, F., Caliva, B., Al-Diri, A.. Microaneurysm Detection using Fully Convolutional Neural Network. Computer Methods and Programs in Biomedicine (2018).
[14] Noushin, H., Pourreza, M., Masoudi, K.,Ghiasi Shirazi , E. Microaneurysm detection in fundus images using a two step convolutional neural network . BioMed Eng OnLine (2019(.
[15] Oscar, J., Arevaloa, F., A. Gonaleza aMindlab, Universidad N., de Colombia, B.. Convolutional network to detect exudates in eye fundus images of diabetic subjects. 12th International Symposium on Medical Information Processing and Analysis; 101600T (2017).
[16] Mark J. J. P. van Grinsven, B., Ginneken, C., B. Hoyng, T.. Fast convolutional neural network training using selective data sampling:Application to hemorrhage detection in color fundus image.IEEE Transactions on Medical Imaging.
[17] Kele , D., Feng, H.. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image. Selected Papers from the Second CCF Bioinformatics Conference (CBC (2017)).
[18] Harry,P.,Frans.,C. Convolutional Neural Networks for Diabetic Retinopathy. International Conference On Medical Imaging Understanding and Analysis 2016.
[19] Gabriel, G., Jhair ,G.. Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images.
[20] ARIA (Automatic Retinal Image Analysis) . Electronic material (Online). Available online at: https://github.com/petebankhead/ARIA.
[21] Structured analysis of the retina (STARE). Electronic material (Online). Available online at: http://www.ces.clemson.edu/∼ahoover/stare/ [referred 16.12.2009.
[22] Digital retinal images for vessel extraction (DRIVE). Electronic material (Online).Available online at: http://www.isi.uu.nl/Research/Databases/DRIVE/ [referred 16.12.2009].
.
[1] Statistics on Diabetes and Dabetic Retinopathy; The National Diabetes Information Clearinghouse (NDIC http://diabetes.niddk.nih.gov/dm/pubs/statistics/#Diagnosed20 (Access Date 25 may 2016).).
[2] Cassin, B. and Solomon, S. Dictionary of Eye Terminology. Gainesville, Florida: Triad Publishing Company, 1990.
[3] Amit B. Jain, Vadivelu Jaya Prakash and Muna Bhende. "Techniques of Fundus Imaging".J. Wang et al., A research on security and privacy issues for patient related data in medical organization system. Int. J. Secur. Appl., 287–298 (2013)
[4] https://www.diabetes.co.uk/diabetes-complications/background-retinopathy.html.
[5] https://oxfordmedicine.com/view/10.1093/med/9780199544967.001.0001/med-9780199544967-chapter-7.
[6] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[7] Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E., Laude, A.. Computer-aided diagnosis of diabetic retinopathy: Areview. Comput Biol Med 2013;43(12):2136–2155.
[8] Gardner, G., Keating, D., Williamson, T., Elliott, A.. Automatic detection of diabetic retinopathy using an artificial neural network: ascreening tool. Brit J Ophthalmol 1996;80(11):940–944.
[10] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
[11] Acharya, U., Lim, C., Ng, E., Chee, C., Tamura, T.. Computer-based detection of diabetes retinopathy stages using digital fundus images. P I Mech Eng H 2009;223(5):545–553.
[12] 12. Adarsh, P., Jeyakumari, D.. Multiclass svm-based automated diagnosis of diabetic retinopathy. In: Communications and Signal Processing (ICCSP), 2013 International Conference on. IEEE; 2013, p. 206–210.
[13] 13. Piotr ,S., Majumdar, F., Caliva, B., Al-Diri, A.. Microaneurysm Detection using Fully Convolutional Neural Network. Computer Methods and Programs in Biomedicine (2018).
[14] Noushin, H., Pourreza, M., Masoudi, K.,Ghiasi Shirazi , E. Microaneurysm detection in fundus images using a two step convolutional neural network . BioMed Eng OnLine (2019(.
[15] Oscar, J., Arevaloa, F., A. Gonaleza aMindlab, Universidad N., de Colombia, B.. Convolutional network to detect exudates in eye fundus images of diabetic subjects. 12th International Symposium on Medical Information Processing and Analysis; 101600T (2017).
[16] Mark J. J. P. van Grinsven, B., Ginneken, C., B. Hoyng, T.. Fast convolutional neural network training using selective data sampling:Application to hemorrhage detection in color fundus image.IEEE Transactions on Medical Imaging.
[17] Kele , D., Feng, H.. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image. Selected Papers from the Second CCF Bioinformatics Conference (CBC (2017)).
[18] Harry,P.,Frans.,C. Convolutional Neural Networks for Diabetic Retinopathy. International Conference On Medical Imaging Understanding and Analysis 2016.
[19] Gabriel, G., Jhair ,G.. Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images.
[20] ARIA (Automatic Retinal Image Analysis) . Electronic material (Online). Available online at: https://github.com/petebankhead/ARIA.
[21] Structured analysis of the retina (STARE). Electronic material (Online). Available online at: http://www.ces.clemson.edu/∼ahoover/stare/ [referred 16.12.2009.
[22] Digital retinal images for vessel extraction (DRIVE). Electronic material (Online).Available online at: http://www.isi.uu.nl/Research/Databases/DRIVE/ [referred 16.12.2009].
.