[1] White paper, “Intrusion Detection: A Survey,” ch.2, DAAD19-01, NSF, 2002.
[2] G. Vigna and R. A. Kemmerer, “Net STAT: A Network based Intrusion Detection Approach,” Proc. 14th An.Comp. Sec. App. Conf., 1998, pp. 25–34.
[3] A. Valdes and D. Anderson, “Statistical Methods for Computer Usage Anomaly Detection Using NIDES,” Tech. rep., SRI International, Jan. 1995.
[4] Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred. “Statistical approaches to ddos attack detection and response”. DARPA Information Survivability Conference and Expositio, 1:303 – 314, 2003.
[5] P. Barford, J. Kline, D. Plonka, and A. Ron. “A signal analysis of network traffic anomalies”.2nd ACM SIGCOMM Workshop on Internet measurement,2002
[6] Kukielka, P.& Kotulski, Z. (2010). Adaptation of The Neural Network- Based IDS to New Attacks Detection.cs.CR.Retrieved from
http://arxiv.org/abs/1009.2406.
[7] V. Siris and F. Papagalou. “Application of anomaly detection algorithms for detecting syn flooding attacks”. Computer Communications, 29(9):1433–1442, 2006.
[8] V. A. Siris, F. Papagalou, “Application of Anomaly Detection Algorithms for Detecting SYN Flooding Attacks”, IEEE GLOBECOM2004, Nov. 2004, pp. 2050-2054.
[9] R. B. Blazek, H. Kim, B. Rozovskii, A. Tartakovsky, “A Novel Approach to Detection of Denial-of-Service Attacks via Adaptive Sequential and Batch-Sequential Change-Point Detection Methods”, IEEE Workshop Information Assurance and Security,2001, pp. 220-226.
[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015
[11] Wickramasinghe, C.S.; Marino, D.L.; Amarasinghe, K.; Manic, M. “Generalization of Deep Learning for Cyber-Physical System Security: A Survey”. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 745–751.
[12] Alpaydin, E. (2014). “Introduction to machine learning”. MIT press.
[13] Deng, L., Yu, D. “Deep learning: Methods and applications”. Found. Trends Signal Process. 2014, 7, 197–387.
[14] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). ''Gradient-based learning applied to document recognition''. Proceedings of the IEEE, 86(11), 2278-2324.
[15] Renato, M. A., Huang, F. J., Boureau, Y. L. &LeCun, Y. (2007). “Unsupervised learning of invariant feature hierarchies with applications to object recognition”. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on (pp. 1-8).
[16] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).''Dropout: A simple way to prevent neural networks from over fitting''. The Journal of Machine Learning Research, 15(1), 1929-1958.