Enhanced Finite Impulse Response Equalizer with Activity Detection Guidance and Tap Decoupling Techniques

Document Type : Original Article

Authors

1 Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menouf, Minufia University, Egypt

2 Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menouf, Minufia University, Egypt.

Abstract

this paper deals with the physical impairments in Free Space (FS) channel of wireless Optical Communication System (OWC) considering different equalization schemes performance. Study of different adaptive equalizers is presented. The convergence process of these equalizers is considered and compared. Results show that the equalizer based on adopting Activity Detection Guidance ADG and Tap Decoupling TD techniques with standard LMS algorithm could provide better performance.

Keywords


[1]      [1]  M. Alresheedi and J. M. H. Elmirghani, “Performance Evaluation of 5 Gbit/s and 10 Gbit/s Mobile Optical Wireless Systems Employing Beam Angle and Power Adaptation with Diversity Receivers,” IEEE J. Sel. Commun., Vol. 29 No.6, pp.1328–1340, 2011.
[2]     [2]   P. Heron, “Next Generation Optical Access Networks”, in Proceedings of Advanced Photonics Congress – Access Networks and In-House Communications,Toronto, Canada, 2011.
[3]      [3]  S.Z. Pinter,” Estimation and Equalization of Fiber Wireless Uplink for Multiuser CDMA 4G Networks”, IEEE Transactions on Communications, Vol. 58, No. 6, June, 2010.
[4]     [4]   Zhu, X, Kahn J. M, “Free Space Optical Communications through Atmospheric Turbulence Channels”, IEEE Transactions on Communications, Vol. 50, No. 8, August 2002.
[5]     [5]   Hemmati,  H, “Deep Space Optical Communications”, John Wiley and Sons, Inc., ISBN 978- 0-04002-7, 2006.
[6]     [6]   Willebrand, H. Ghuman, “Free-Space Optics Enabling Optical Connectivity in Today’s Networks”, Sams Publishing, Indiana, ISBN 0-672-32248-x, USA, 2002.
[7]     [7]   S. Arnon and N. S. Kopeika, “Adaptive Optical Transmitter and Receiver for   Space Communication through Thin Clouds,” Appl. Opt. Vol.36, pp.1987-1993, 1997.
[8]     [8]   S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of Optical Pulse Distortion through Clouds for Satellite to Earth Adaptive Optical Communication”, J. Mod. Opt. Vol.41, pp. 1591–1605, 1994.
[9]     [9]   J. G. Proakis, Digital Communications, 2nd ed. McGraw- Hill, 1989, pp. 583–664.
[10]  [10] B. R. Strickland, M. J. Lavan, E. Woodbridge, and V. Chan, “Effects of Fog on the Bit error Rate of Free -Space LASER Communication system”, Appl. Opt.Vol. 38, pp. 424–431, 1999.
[11]  [11] E. J. Mc Cartney, “Optics of the Atmosphere Scattering by Molecules and Particles”, Wiley, 1976, pp. 176–261.
[12]  [12] G. C. Mooradian and L. B. Geller, “Temporal and Angular Spreading of Blue - Green Pulses in Clouds,” Appl. Opt.Vol. 21, pp.1572–1577 ,1982.
[13]  [13] A. Bucher, “Computer Simulation of Light Pulse Propagation for Communication through Thick Clouds”, Appl. Opt. Vol.12, pp.2401–2415, 1973.
[14]  [14]                 R. A. Elliot, “Multiple Scattering of Optical Pulses in Scale Model Clouds,” Appl. Opt. Vol.22, pp.2670–2681, 1983.
[15]  [15] G. C. Mooradian, L. B. Geller, L. B. Stoots, D. H. Stephens, and R. A. Krautwald, “Blue-Green Pulsed Propagation through Fog,” Appl. Opt. Vol.18, pp.429–441, 1979.
[16]  [16] Tisftsis T. A, “Performance of Heterodyne Wireless Optical Communications Systems over Gamma Atmospheric Channels”, Electronics Letters. Vol. 44, No. 5, pp.373 - 375, 2008.
[17]  [17] S. Arnon and N. S. Kopeika, “Probing and Mentoring Aerosol and Atmospheric Clouds with an Electro - Optic Oscillator”, Appl. Opt. Vol.35, pp.5427 – 5434, 1996.
[18]  [18] J. M. Kahn, W. J. Krause, and J. B. Carruthers, “Experimental Characterization of Non directed Indoor Infrared Channels,” IEEE Trans. Commun. Vol.43, pp.1613–1623, 1995.
[19]  [19] B. Farhang - Boronjeny, “Adaptive Filters”, John Wiley & Sons, 1999.
[20]  [20] S. Haykin, “Adaptive Filtering Theory”, Prentice Hall Information and System Sciences Series, Eaglewood Cliffs, N.J. 1991.
[21]  [21] J. Homer, “LMS Estimation via Structural Detection”, IEEE Transactions on Signal Processing, Vol. 46, No. 10, October 1998, IEEE Signal Processing Society Pittsburgh, P.A., 1998, pp.2651-2663.
Volume 28, ICEEM2019-Special Issue
ICEEM2019-Special Issue: 1st International Conference on Electronic Eng., Faculty of Electronic Eng., Menouf, Egypt, 7-8 Dec.
2019
Pages 102-106