[1]     Nayak, J., P. S. Bhat,P.S.,Acharya, U. R., “Automatic identification of         diabetic maculopathy stages.
                                                                                                                [2]     Osareh, A., Mirmehdi, M., Thomas, B., and Markham, R.,      “Automatic recognition of exudative maculopathy using fuzzy C-means  clustering and neural network".Available on http://www.cs.bris.ac.uk/Publications/ Papers/1000553.pdf , on        November 7, 2017.
                                                                                                                [3]     Vimala and Kajamohideen, Detection of diabetic maculpathy in human retinal images using morphological operations'' Online 14 (3) 2014. (http://www.thescipub.com/ojbs.toc), Online Journal of Biological Sciences 14 (3): 175-180, 2014.
                                                                                                                [4]     Nayak, J., Bhat, P. S., & Acharya, U. R. (2009). Automatic identification  of diabetic maculopathy stages using fundus images. Journal of medical engineering & technology, 33(2), 119-129.
                                                                                                                [5]     D. Marin , M. E. Gegundez-Arias, B. Ponte,''An exudate detection                                                                                         method for diagnosis risk of diabetic macular edema in retinal images using feature-based and supervised classification'', Medical & Biological Engineering & Computing,Jan 2018.
                                                                                                                [6]     Walter, T., and Klein, J.-C., “Segmentation of color fundus images of      the   human retina: Detection of the optic disc and the vascular tree using morphological techniques”, Springer-Verlag Berlin Heidelberg 2001, pp. 282–287.
                                                                                                                [7]     HashikinK., & Isa, N. A. M. (2012, March). Enhancement of the low contrast image using fuzzy set theory. In Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on (pp. 371-376). IEEE.
                                                                                                                [8]     Akhavan, R., & Faez, K. (2013, December). Automated retinal blood vessel segmentation using fuzzy mathematical morphology and morphological reconstruction. In International Symposium on Artificial Intelligence and Signal Processing (pp. 131-140). Springer, Cham.
                                                                                                                [9]     Li, G., Tong, Y., & Xiao, X. (2011). Adaptive fuzzy enhancement algorithm of surface image based on local discrimination via grey entropy. Procedia Engineering, 15, 1590-1594.
                                                                                                                [10]  Cheng, H. D., & Xu, H. (2000). A novel fuzzy logic approach to contrast enhancement. Pattern recognition, 33(5), 809-8.
                                                                                                                Chaira, T. (2015). Medical image processing: Advanced fuzzy set theoretic techniques. CRC Press.
                                                                                                                [1]     Wang, X. Y., Wang, T., & Bu, J. (2011). Color image segmentation using pixel wise support vector machine classification. Pattern Recognition, 44(4), 777-787.
                                                                                                                [2]     ] Dong-liang, P., & An-ke, X. (2005, October). Degraded image enhancement with applications in robot vision. In Systms, Man and Cybernetics, 2005 IEEE International Conference on (Vol. 2, pp. 1837-1842). IEEE .
                                                                                                                [3]     Kerre, E. E., & Nachtegael, M. (Eds.). (2013). Fuzzy techniques in image processing (Vol. 52). Physica.
                                                                                                                [4]     Pal, S. K., & King, R. (1981). Image enhancement using smoothing with fuzzy sets. IEEE TRANS. SYS., MAN, AND CYBER., 11(7), 494-500.
                                                                                                                [5]     Morphological Operations.      http://www.viz.tamu.edu/faculty/parkeends489f00/notes/sec1_9.html./ accessed on 7-11-2017.
                                                                                                                [6]     Shih, F. Y. (2009). Image processing and mathematical morphology: fundamentals and applications. CRC press.
                                                                                                                [7]     Zhang, X., & Fan, G. (2006, November). Retinal spot lesion detection using adaptive multiscale morphological processing. In International Symposium on Visual Computing (pp. 490-501). Springer, Berlin, Heidelberg.
                                                                                                                [8]     McAndrew, A. (2004). An introduction to digital image processing with matlab notes for scm2511 image processing. School of Computer Science and Mathematics, Victoria Univ. of Tech., 264(1).
                                                                                                                [9]     Sinthanayothin, C., Boyce, J. F., Cook, H. L., & Williamson, T. H. (1999). Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. British Journal of Ophthalmology, 83(8), 902-910.
                                                                                                                [10]  Mui Hong Ang. '' Computer –Based Identification of Diabetic Maculpathy Stages Using Fundus Images'', Multi-Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies,2011.
                                                                                                                [11]  Walter, T., Klein, J. C., Massin, P., & Erginay, A. (2002). A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE transactions on medical imaging, 21(10), 1236-1243.
                                                                                                                [12]  Tang, H., Wu, E. X., Ma, Q. Y., Gallagher, D., Perera, G. M., & Zhuang, T. (2000). MRI brain image segmentation by multi-resolution edge detection and region selection. Computerized Medical Imaging and Graphics, 24(6), 349-357.
                                                                                                                [13]  Chandy, D. A., & Kumari, V. V. (2006). Genetic algorithm-based location of optic disc in retinal images. Academic Open Internet Journal, 17.
                                                                                                                [14]  Singh, J., & Sivaswamy, J. (2008, February). Fundus foveal localization based on image relative subtraction-IReS approach. In Proceedings of the 14th national conference on communications.
                                                                                                                [15]  Smith, M. A., & Kanade, T. (1998, January). Video skimming and characterization through the combination of image and language understanding. In Content-Based Access of Image and Video Database, 1998. Proceedings., 1998 IEEE International Workshop on (pp. 61-70). IEEE.
                                                                                                                [16]  Lindeberg, T. (2013). Scale selection properties of generalizedscale-space interest point detectors. Journal of Mathematical Imaging and vision, 46(2), 177-210.