[1] Yap B.W., Rani K.A., Rahman H.A.A., Fong S., Khairudin Z., Abdullah N.N. (2014) An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets. In: Herawan T., Deris M., Abawajy J. (eds) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). Lecture Notes in Electrical Engineering, vol 285. Springer, Singapore
[2] Hartono, Hartono & Sitompul, Opim & Tulus, Tulus & Nababan, Erna. (2018). Biased support vector machine and weighted-SMOTE in handling class imbalance problem. International Journal of Advances in Intelligent Informatics. 4. 21. 10.26555/ijain.v4i1.146.
[3] Kotsiantis, Sotiris & Kanellopoulos, D & Pintelas, P. (2005). Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering. 30. 25-36.
[4] Pattanayak, Sanjibani & Rout, Minakhi. (2018). Experimental Comparison of Sampling Techniques for Imbalanced Datasets Using Various Classification Models. 10.1007/978-981-10-6875-1_2.
[5] López García, Pedro & Masegosa, Antonio & Onieva, Enrique & Osaba, Eneko. (2018). Ensemble and Fuzzy Techniques Applied to Imbalanced Traffic Congestion Datasets: A Comparative Study. 10.1007/978-3-319-91641-5_16.
[6] Rout, Neelam. (2018). Handling Imbalanced Data: A Survey.
[7] Ali, Haseeb & Salleh, Mohd & Saedudin, Rohmat & Hussain, Kashif & Mushtaq, Muhammad. (2019). Imbalance class problems in data mining: A review. Indonesian Journal of Electrical Engineering and Computer Science. 14. 10.11591/ijeecs.v14.i3.pp1552-1563.
[8] Kaya, Heysem & Karpov, Alexey. (2017). Introducing Weighted Kernel Classifiers for Handling Imbalanced Paralinguistic Corpora: Snoring, Addressee and Cold. 10.21437/Interspeech.2017-653.
[9] More, Ajinkya. (2016). Survey of resampling techniques for improving classification performance in unbalanced datasets.
[10] Ali, Aida & Shamsuddin, Siti Mariyam & Ralescu, Anca. (2015). Classification with class imbalance problem: A review. 7. 176-204.
[11] Dal Pozzolo, Andrea & Caelen, Olivier & Bontempi, Gianluca. (2015). When is Undersampling Effective in Unbalanced Classification Tasks?. 10.1007/978-3-319-23528-8_13.
[12] Satyasree, K & Murthy, J. (2013). An exhaustive literature review on class imbalance problem. Int. J. Emerg. Trends Technol. Comput. Sci.. 2. 109-118.
[13] Zhaoke, Huang & Yang, Chunhua & Chen, Xiaofang & Huang, Keke & Xie, Yongfang. (2019). Adaptive over-sampling method for classification with application to imbalanced datasets in aluminum electrolysis. Neural Computing and Applications. 10.1007/s00521-019-04208-7.
[15] Jurgovsky, Johannes & Granitzer, Michael & Ziegler, Konstantin & Calabretto, Sylvie & Portier, Pierre-Edouard & He, Liyun & Caelen, Olivier. (2018). Sequence Classification for Credit-Card Fraud Detection. Expert Systems with Applications. 100. 10.1016/j.eswa.2018.01.037.