[1] D. Sisodia and D. S. Sisodia, “Prediction of Diabetes using Classification Algorithms,” Procedia Comput. Sci., vol. 132, no. Iccids, pp. 1578–1585, 2018.
[2] T. A. S. Foundation, “Apache Spark Overview,” pp. 1–60, 2016.
[3] “http://hadoop.apache.org/.last accessed: 18/8/2019”.
[4] J. Zakir, “Issues in Information Systems,” vol. 16, no. Ii, pp. 81–90, 2015.
[5] R. L. Leitheiser, “Data Quality in Health Care Data Warehouse Environments,” vol. 00, no. c, pp. 1–10, 2001.
[6] P. Gulia, “Big Data Analytics,” vol. 4, no. 2, pp. 1–4, 2016.
[7] N. Elgendy and A. Elragal, “Advances in Data Mining. Applications and Theoretical Aspects,” vol. 7987, no. August, 2013.
[8] “Adams, M.N.: Perspectives on Data Mining. International Journal of Market Research 52(1), 11–19 (2010).”
[9] J. J. (Jon. H. Park, H. C. Chao, H. Arabnia, and N. Y. Yen, “Advanced multimedia and ubiquitous engineering: Future information technology volume 2,” Lect. Notes Electr. Eng., vol. 354, pp. 9–16, 2016.
[10] A. Iyer, J. S, and R. Sumbaly, “Diagnosis of Diabetes Using Classification Mining Techniques,” Int. J. Data Min. Knowl. Manag. Process, vol. 5, no. 1, pp. 01–14, 2015.
[11] Q. Dai, C. Zhang, H. Wu, and S. Vocational, “Research of Decision Tree Classification Algorithm in Data Mining,” vol. 9, no. 5, pp. 1–8, 2016.
[12] M. Nabi, A. Wahid, and P. Kumar, “Performance Analysis of Classification Algorithms in Predicting Diabetes,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 3, pp. 456–461, 2017.
[13] R. Alsrraj, “random forest,” no. May, 2019.
[14] D. Sisodia, “ISVM for Face Recognition,” 2010.
[15] I. Rish, “An Empirical Study of the Naïve Bayes Classifier An empirical study of the naive Bayes classifier,” no. January 2001, 2014.
[16] N. M. Saravana Kumar, T. Eswari, P. Sampath, and S. Lavanya, “Predictive methodology for diabetic data analysis in big data,” Procedia Comput. Sci., vol. 50, pp. 203–208, 2015.
[17] P. S. Kumar and S. Pranavi, “Performance analysis of machine learning algorithms on diabetes dataset using big data analytics,” 2017 Int. Conf. Infocom Technol. Unmanned Syst. Trends Futur. Dir. ICTUS 2017, vol. 2018-Janua, no. Iddm, pp. 508–513, 2018.
[18] S. Perveen, M. Shahbaz, A. Guergachi, and K. Keshavjee, “Performance Analysis of Data Mining Classification Techniques to Predict Diabetes,” Procedia Comput. Sci., vol. 82, pp. 115–121, 2016.
[19] K. M. Orabi, Y. M. Kamal, and T. M. Rabah, Early predictive system for diabetes mellitus disease, vol. 9728. 2016.
[20] T. A. Rashid and S. Abdullah, “An Intelligent Approach for Diabetes Classification , Prediction and Description An Intelligent Approach for Diabetes Classification , Prediction and Description,” no. January 2016, 2015.
[21] D. M. Farid, M. A. Al-Mamun, B. Manderick, and A. Nowe, “An adaptive rule-based classifier for mining big biological data,” Expert Syst. Appl., vol. 64, pp. 305–316, 2016.
[22] U. Ali Zia and N. Khan, “Predicting Diabetes in Medical Datasets Using Machine Learning Techniques,” Int. J. Sci. Eng. Res., vol. 8, no. 5, pp. 1538–1551, 2017.
[23] “https://www.python.org/downloads/release/python-366/..last accessed: 18/8/2019” .
[24] “http://releases.ubuntu.com/16.04/..last accessed: 18/8/2019” .
[25] “https://www.kaggle.com/uciml/pima-indians-diabetes-database. .last accessed: 18/8/2019” .