Construction of eleven and thirteen mutually orthogonal path-squares

Document Type : Original Article

Author

Dept. of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menoufya University, EGYPT

Abstract

In this paper, we give an introduction to an area of combinatorial theory which deals with. mutually orthogonal  (MOGSs) where  is a spanning subgraph of  That is, we will investigate the maximal number of a collection of  of order n  which are orthogonal in pairs. The most general object studied in this theory is a set of the so-called mutually orthogonal Latin squares (MOLSs) of order  which are equivalent to mutually orthogonal if . That is, this approach is an extension of MOLSs. Our objective in this paper is to discuss two direct constructions from conjecture in [7] for all prime numbers   to obtain MOGSs  where .

Keywords


[1]       B. Ganter, H.-D.O.F. Gronau, R. C. Mullin, ”On Orthogonal Double Covers Of   ”, Ars Combin., Vol. 37, pp. 209-221, 1994.
[2]       B. Ganter, H.-D.O.F. Gronau, ”On Two Conjectures Of Demetrovics, Füredi and Katona On Partitions”, Discrete Math., Vol. 88, pp. 155-194. 1991.
[3]       F. E. Bennet, L. Wu, ”On Minimum Matrix Representation Of Closure Operations”, Discrete Appl. Math., Vol. 26, pp. 25-40, 1990.
[4]       H.-D.O.F. Gronau, S. Hartman, M. Grüttmüller, U. Leck, V. Leck, ”On Orthogonal Double Covers Of Graphs”, Des. Codes Cryptogr., Vol. 27, pp. 49-91, 2002.
[5]       H.-D.O.F. Gronau, R.C. Mullin, A. Rosa, ”Orthogonal Double Covers Of Complete Graphs By Trees”, Graphs Combin., Vol. 13, pp. 251-262, 1997.
[6]       R. El-Shanawany, H.-D.O.F. Gronau, and Martin Grüttmüller. ”Orthogonal Double Covers Of  By Small Graphs”, Discrete Appl. Math., Vol. 138, pp. 47-63, 2004.
[7]       R. El-Shanawany, ”Orthogonal Double Covers Of Complete Bipartite Graphs”, Ph.D. Thesis, Universität Rostock, 2002.
[8]       V. Leck, ”Orthogonal Double Covers Of ”, Ph.D. Thesis, Universtät Rostock, 2000.
[9]       B. Alspach, K. Heinrich, and G. Liu. Orthgonal factorizations of graphs. In J.H.  Dinitz and D.R. Stinson, editors, Contermporary design theory, chapter 2. Wiley,New York, 1992.
[10]   D. Betten. Zum Satz von Euler-Terry. Math. Naturewiss. Unterr., 36:449-453, 1983.
[11]   T. Beth, D. Jungnikel, and H. Lenz. Design Theory. CombridgeUniversity Press, Cambridge, 1986..
[12]   [12] R.C. Bose and S.S. Shrikhande. on the falsity of euler's about the non-existence of two orthogonal latin squares of order 4t+2. Proc. Nat. Acad. Sci., 45:734-737, 1959.
[13]   R.C. Bose, S.S. Shrikhande, and E.T. Parker. Further results on the construction of mutually orthogonal latin squares and the falsity of euler's conjucture. Canda. J. Math., 12:189-203, 1960.
[14]   C.J. Colbourn and J.H. Dinitz, editors. The CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton, FL, 1996.
[15]   L. Euler. Recherches sur une nouveau especce de quarres magiques. In Leonhardi Euleri opera omina. Ser. Prima, 7:291-392, 1900.
[16]   C.W.H. Lam, Thiel, and S.Swiercs. The non-existence of projective planes of order 10. Canad. J.Math., 41:1117-1123, 1989.
[17]   R.Mendelsohn, and A.Rosa. one-factorizations of the complete graph. A survey J. Graph theory, 9:43-65, 1985.
[18]   E.T.Parker. Construction of some sets of mutually orthogonal latin squares. Proc. Amer. Math. Soc., 10:946-949, 1959.
[19]   E.T.Parker. orthogonal latin squares. Proc. Nat. Acad. Sci. U.S.A., 45:859-862, 1959.
[20]   D.R. Stinson. A short proof of the nonexistence of a pair of orthogonal latin squares of order six. J.Combin. Theory A, 36:373-376, 1984.
[21]   M.G. Tarry. Le probleme des 36 officiers. C.R. Assoc. France Av. Sci., 29:170-203, 1900.
[22]   W.D. Wallis. one-factorizations of the complete graph.
[23]   W.D. Wallis. Combinatorial Designs. Marcel, New York, 1988.