Cylindrical Dielectric Resonator Antenna over Soft Ground Plane

Document Type : Original Article

Authors

Dept. of Electronic and Electrical Communication Eng., Faculty of Electronic Engineering, Menoufya University, EGYPT

Abstract

Abstract: Finite-difference time-domain (FDTD) method is used to investigate the characteristics of Cylindrical Dielectric Resonator Antenna (CDRA) over a soft ground plane. The effect of the soft ground plane on the input impedance, the radiation pattern, the circular polarization and the mutual coupling between two CDRAs are investigated. Compared with the smooth perfect ground plane, it’s found that the soft ground plane introduces a reduction in the backward radiation, an increase in the circular polarization beamwidth and a reduction in the mutual coupling between the two elements

[1]     S. A. Long, M. W. McAllister, and L. C Shen, “The Resonant Cylindrical Dielectric Cavity Antenna,” IEEE Trans. Antennas Propagat., vol. 31, pp. 406–412, May 1983.
[2]     A. A. Kishk, H. A. Auda, and B. C. Ahn, “Radiation Characteristics of Cylindrical Dielectric Resonator Antennas with New Applications,” IEEE Antennas and Propagat. Society Newsletter, pp. 7-16, Feb. 1989.
[3]     R. Chair, A. A. Kishk, and K. F. Lee, “Comparative Study on the Mutual Coupling Between Different Sized Cylindrical Dielectric Resonators Antennas and Circular Microstrip Patch Antennas,” IEEE Trans. Antennas Propagat., vol. 53, pp. 1011-1019, March 2005.
[4]     G. Drossos, Z. Wu and L. E. Davis, “Circular Polarized Cylindrical Dielectric Resonator Antenna,” Electronics Letters, vol. 32, pp. 281-283, Feb. 1996.
[5]     R. K. Mongia, A. Ittipiboon, M. cuhaci and D. Roscoe, “Circularly Polarized Dielectric Resonator Antenna, ” Electronics Letters, vol. 30, pp. 1361-1362, August. 1994.
[6]     P-S. kildal, “Definition of Artificially Soft and Hard Surfaces for Electromagnetic Waves,” Electronics Letters, vol. 24, pp. 168-170, Feb. 1988.
[7]     Z. Ying, and P-S. kildal, “Improvements of Dipole, Helix, Spiral, Microstrip Patch and Aperture Antennas with Ground Planes by Using Corrugated Soft Surfaces,”  IEE proc.-Mirow. Antennas propagat., vol. 143, pp. 244-248, June 1996.
[8]     Z. Ying, P.-S.kildal, and A. A. Kishk, “Study of Different Realizations and Calculation Models for Soft Surfaces by Using a Vertical Monopole on a Soft Disk as a Test Bed,” IEEE Trans. Antennas Propagat., vol. 44, pp. 1474-1481, Nov. 1996.
[9]     H. Nakano, K. Hitosugi, N. Tatsuzawa, D. Togashi, H. Mimaki, and J.Yamauchi, “Effects on The Radiation Characteristics of Using a Corrugated Reflector with a Helical Antenna and Electromagnetic Band-Gap Reflector with a Spiral Antenna,” IEEE Trans. Antennas propagat., vol. 53, pp. 191-199, Jan. 2005
[10] E. El-Deen, S. H. Zainud-Deen, H. A. Sharshar and M. A. Binyamin, “Control of Rectangular Dielectric Resonator Characteristics by Ground Plane Shape,” Twenty Third National Radio Science Conference (NRSC2006), Egypt, March 2006.
[11] A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method. Norwood, MA: Artech House, 2000.
[12] [12] A. Z. Elsherbeni, FDTD Course Notes, The University of Mississipi, December 2004
[13] J. G. Maloney, K. l. Shalder, G. S. smith, “A Simple FDTD Model for Transient Excitation of Antennas by Transmission Lines,” IEEE Trans. Antennas Propagat., vol. 42, pp. 289-292, Feb. 1995.
[14] K. R. UMASHANKAR, A. Taflove and B. Beker, “Calcualtion and Experimental Validation of Induced Current on Coupled Wires in an Arbitrary Shaped Cavity,” IEEE Trans. Antennas propagat., vol. 35, pp. 1248-1256, Nov. 1987.