PROPAGATION CHARACTERISTICS OF IRRADIATED BINARY GLASS OPTICAL FIBERS IN THERMAL FIELDS

Document Type : Original Article

Author

Dept. of Electronic and Electrical Communication Eng., Faculty of Electronic Engineering, Menoufya University, EGYPT

Abstract

In the present paper, the penalties of performance of single mode optical fiber cables employed in thermo-irradiated fields in nuclear projects environments and space communication systems have been analyzed deeply and parametrically. Irradiation effects as well as the thermal effects are modeled based on experimental measurements, the investigated over the practical ranges of interest. Spectral losses as well as total chromatic dispersion are considered for thermal-irradiation dependences. Four dependent effects {spectral losses, pulse spreading, fiber bandwidth, and transmitted bit rate} are then investigated. Severe reduction effects of both thermal field and irradiation field are assured and concluded. Comparison between the present case and the irradiation-free case at room temperature is made.
Three cases of special impact at three special windows are studied namely: dispersion-free, losses-free (minimum), and OH-losses-free. It is found that the maximum available bit rate is 5.89 Tbit/sec at optical wavelength l=1.59 mm at OH-free, no marginal losses and dose-free case.  

 
[1]     A. F. Fernuander et. Al., "Test Facilities at SCK. CEN for Radiation Tolerance Assessment: From Space Applications to Fusion Environment, Proc. IEEE RAECS 2002, Padovea Italy, 20002.
[2]     F. Berghmans et. Al., “Radiation Effects in Optical Communication Devices ,” Fberghma@sckcen. be, 2001.
[3]     M. Decreton et. al., “Fibre Optica Link Devices for Ionizing Radiation Environments,”, Fberghma@sckcen.be, 1988.
[4]     M. Ott, P. Friedberg,, “Technology Vlidation of Optical Fiber Cables for Space Flight Environments”, SPIE Vol. 4216, Optical Devices for Fiber Communication II, November 2000, pages; 206-217.
[5]     M. Ott, S. Macmuphy, Matthew Dodson, “Radiation Testing of Commercial Off the Shelf 62.5/125/250 Micron Optical Fiber for Sapce Flight Environments”, Test Report, NASA Electronic Parts and Packaging Program internal Web publication, October 2001.
[6]     M. Ott., J. Plante, J. Shaw, M. A. Garrison Darrin,” Fiber Optic Cable Assemblies for Space Flight: Issues and Remedies,” Paper number 975592 AIAA/SAE World Aviation Congress, Anaheim, CA 1997.
[7]     M. Ott. S. Macmurply, and M.Dodson, “Radiation Testing of Commerial off the Shelf 62.5/125/250 Micron Optical Fiber for Space Flight Environments”, NASA, Gadedard Space Flight Center Code 562 melanie. Ott.@ysfc.nasa.gov.
[8]     M. N. Ott., “Fiber Optic Cable Assemblies for Space Flight II: Thermal and Radiation Effects.”, Photonics for Space Environments VI, Proceedings of SPIE Vol. 3440, 1998.
[9]     M. N. Ott. Patricia Friedberg, “Technology Validation of Optical Fiber Cables for Space Flight Environments,” Oprical Devices for Fiber Communication II, Proceedings of SPIE Vol. 4216, 2001.
[10] M. N. Ott., “Is Radiation an Issue for Fiber Optics “, EEE Link, Vol.1, No.2, pp.9-13, April 1995.
[11] F. Berghmans, “Nuclear Industry Puts Optics on Trial”, in OLE (Opto & Laser Europe), Vol.22, pp. 25-30, July 1995.
[12] H. Henschel, “Radiation Hardness Optical Fibers”, SPIE Proccedings,Vol. 2425, pp.21-31, 1994.
[13] F. Berghmans, Implementing Photonic Sensing in Nuclear Enirronments from Device Level Case Studies to Dedicated System Construction, Ph.D. Dissertaion , Vrije Univ. Brusel, Belgium 1998.
[14] R.H. West, “ A local View of Radiation Effects in Fiber Optics”, J. Lightwave. Technol., Vol.6, No. 2, pp. 155-164, Feb. 1988.
[15] [15] E. J. Friebele et. Al., “Interlaboratory Comparison of Radiation-Induced Attenuation in Optical Fibers. Part I: Steady-State Exposurs” , J. Lightwave. Technol., Vol.6, No. 2, pp. 165-171, Feb. 1988
[16] E. D. Taylor et. al., “Interlaboratory Comparison of Radiation-Induced Attenuation in Optical Fibers. Part II: Steady-State Exposurs” , J. Lightwave. Technol., Vol.8, No. 6, pp. 967-976, June. 1990
[17] E. J. Friebele et. al., “Interlaboratory Comparison of Radiation-Induced Attenuation in Optical Fibers. Part III: Transient Exposurs” , J. Lightwave. Technol., Vol.8, No. 6, pp. 977-989, June. 1990
[18] D. L. Griscom, “g and fission-reactor radiation effects on the visible-range transparency of a aluminum-jacketed, all-silica optical fibers” J. of Appl. Physics, Vol.80, 2141-2155, 1996.
[19] A. Femandez, F. Berghmans, B. Brichard, M. Van Uffelen, M. Decreton, P. Megret, M. Blondel, and A. Delechambre, “Radiation-Tolerant Data Links for Fusion Reactors: From Serial Electrical Data Link to Parallel Optical Data Link” in Proc. Symposium IEEE/LEOS Benelux Chapter, Vrije Universitiet Brussel, pp. 169-172, 2001.
[20] S. S. Walker, “ Rapid Modelling and Estimation of Total Spectral Loss in Optical Fibers”, , J. Lightwave. Technol., Vol. LT-4, No. 8, pp. 1125-1137. 1986.
[21] L. B. Jeunhomme, Single Mode Fiber Optics, Marcel-Dekker, Inc., NY, USA, 1983, Ch.III
[22]  J. R. M., Meyer, M. R. Kruer, and F. J. Barloli, “Optical Heating in Semiconductors: Laser Damage in Ge, Si, InSb, and GaAs”, J. Appl. Phys., Vol. 54, No. 10, pp.5513-5522, Oct. 1980.
[23] M. Y., Noguchi K., Ashiya F., Negishi, Y, and Kojima N.,” Maximum Measurable Distance for a Single Mode Optical Fiber Fault Locator Using the Stimulated Raman Scattering (SRS Effect)”, IEEE Trans. Microwave Thoery and Tech., Vol.MTT-30, No. 10, pp. 1461-1465, Oct. 1982.
[24] M. Medhat, S. Y. El-Zaiat, S. M. Abdou, A. Radi, and M. F. Omar, “ Interferomagnetic Determination of Gamma Radiation Effects on Optical Parameters of GRIN Optical Fiber", J. Opt. A.: Pure Appl. Opt., Vol. 4, pp. 485-490, 2002.
[25] M. Medhat, S. Y. El-Zaiat, S. M. Abdou, A. Radi, and M. F. Omar, “ Applications of Fringes of Equal Harmonic Order for Investigating the Effect of Temperature on Optical Parameters of a GRIN Optical Fiber,” J. Opt. A: Pure Appl. Opt., Vol.4, pp.174-179, 2002.
[26] G. Keiser, “ Optical Fiber Communications,” Mc-Graw Hill, 3rd Ed, NY, USA, 2000
Technical Staff of CSELT, Torino, Italy, Optical Fiber Communications, McGraw-Hill, USA, 1980