I. S. Grant, W. R. Phillips, Electromagnetism. John Wiley & Sons, 2013.
V. S. Vladimirov, Equations of mathematical physics. Nauka, Moscow,
1881.
A. Dezhbord, Taher Lotfi, Katayoun Mahdiani, A new efficient method for
a case of the singular integral equation of the first kind. Journal of
Computational and Applied Mathematics. 296 (2016) 156-169.
B. L. Yung, S. Lee, U. J. Choi, A modified boundary integral method on
open arcs in the Plane. Computers Math. 31 (1996) 37-43.
E. S. Shoukralla, Approximate solution to weakly singular integral
equations, Journal of appl. Math Modelling. 20 (1996) 800-803.
E. Kendall, Atkinson, I. H. Sloan, The numerical solution of first-kind
logarithmic-kernel integral equations on smooth open arcs. Mathematics
of Computation. 56 (1991) 119-139.
G. Schmidt, B. N. Khoromoskij, Boundary integral equations for the
biharmonic Dirichlet problem on non-smooth domains, Journal of integral
equations and applications. 11 (1999).
K. Maleknejad , A. Ostadi, Using Sinc-collocation method for solving
weakly singular Fredholm integral equations of the first kind, Journal
Applicable Analysis, 96 (2017) 702-713.
"> S. Prössdore, J. Saranen, I. H. Sloan, A discrete method for the logarithmic
kernel integral equations on open arcs, J. Austral. Math. Soc. Ser. B 34
(1993) 401-418.
S. Christiansen, E. B. Hansen, Numerical Solution of boundary value
problem through integral equations, Apple. Math, and Mech., ZAMM. 58
(1978) 14-25.
V. Domı́nguez, High-order collocation and quadrature methods for some
logarithmic kernel integral equations on open arcs, Journal of
Computational & Applied Mathematics. 161 (2003) 145-159.
E. S. Shoukralla, S. A. El-Serafi, The Dirichlet Problem for Laplace
equation for an open boundary, Ain Shams University in Egypt,
Engineering Bulletin. 25 (1990) 544-551.
Y. Hayashi, The Dirichlet problem for the two-dimensional Helmholtz
equations for an open boundary, J. Math. Anal., and Appl. 44 (1973) 489-
530.
Y. V. Shestopalv, Y. G. Smirnov, E. R. Chernokozhin, Logarithmic
integral equations electromagnetics, VSP, 2000.
Y.V. Shestopalov, E.V. Chernokozhin, On the solution to integral
equations with a logarithmic singularity of the kernel on several intervals
of integration: elements of the spectral theory, Visnek, Kharkov National
university, Ukraine. 1058 (2013)