Electromagnetic Absorbing Materials

Document Type : Original Article

Authors

1 Faculty of Electronic Engineering, Menoufia University, Egypt

2 Faculty of Electronic Engineering, Menoufia University, Menouf,Egypt

Abstract

Electromagnetic absorbing materials can be classified into: conventional absorbers, metamaterial absorbers, and reconfigurable absorbers. This paper includes a short survey on these types and there applications. It also includes the design of a thin electromagnetic absorber. The absorber is based on mushroom-like electromagnetic band gap structure with square patches. A simple procedure is developed to design the absorber. The design is checked by simulation using HFSS package. The effect of changing dimensions of the structure on absorption is evaluated. The results of the parametric study were used to trim the design and get more accurate dimensions of the structure.

Keywords


[1] H. Kaur, G. Aul, “A Review Based on Effects of Change in Thickness and Number of Layers on Microwave Absorbing Materials,”IJSR, Vol.3,ISSN(on line):2319-7064,pp.1141-1145,2014.
[2] E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section. London, U.K.: Artech House, 1993.
[3] B. A. Munk, Frequency Selective Surfaces: Theory and Design. New York: Wiley, 2000.
[4] J. Reinert, J. Psilopoulos, J. Grubert, and A. F. Jacob, “On the potential of graded-chiral Dallenbach absorbers,” Microw. Opt. Technol. Lett., Vol. 30, No. 4, pp. 254–257, 2001.
[5] A. R. Chandran, T. Mathew, C. K. Aanandan, P. Mohanan, and K. Va-sudevan, “Frequency tunable metallo-dielectric structure for backscat-tering reduction,” Electron. Lett., Vol. 40, No. 20, pp. 1245–1246, 2004.
[6] F. Terracher and G. Berginc, “A broadband dielectric microwave absorber with periodic metallizations,” J. Electromagn. Waves Appl., vol.13, pp. 1725–1741, 1999.
[7] Marker, B. (n.d.). Use of Radar-Absorbing Material to Resolve U.S. Navy Electromagnetic Interference Problems. Retrieved April Monday, 2014, fromhttp://www.navsea.navy.mil/nswc/dahlgren/Leading% 20Edge/E3/05_Solving_the_E3_Challenge_continued. pdf
[8] F.Billotti, L.Nucci, L.Vegni, “An SRR-based microwave absorber,” Microw. Opt. Technol. Lett., Vol. 48, pp. 2171–2175, 2006
[9] Q. Y.Wen, H. W.Zhang, Y. S.Xie, “Dual band terahertz metamaterialabsorber: design, fabrication, and characterization,” Appl. Phys. Lett., 95, 2009.
[10] H.Tao, C.M.Bingham, D.Pilon, et al., “A dual band terahertz metamaterialabsorber,” J. Appl. Phys. D, 2010, 43.
[11] S.Bhattacharyya, K.V.Srivastava, “An ultra-thin electric field driven LCresonator structure as metamaterial absorber for dual band applications,” Proc.URSI Int. Symp.Electromagnetic Theory, Hiroshima, Japan, 20‒24 May 2013.
[12] M.H.Li, L.H.Yuan, B.Zhou, et. al., “Ultrathin multiband gigahertzmetamaterial absorbers,” J. Appl. Phys., 2011, 110.
[13] S.Bhattacharyya, K. V.Srivastava, “Triple band polarization-independentultrathin metamaterial absorber using electric field-driven LC resonator,” J.Appl. Phys., 2014, 115.[14] D. Zheng, Y. Cheng, D. Cheng, et. al., “Four-band polarization-insensitivemetamaterialabsorber based on flower-shaped structures,” Prog.Electromagn.Res., 2013, 142.
[15] M.R.Soheilifar,R.A.Sadeghzadeh, “Design, fabrication and measurementof two layered quadruple-band microwave metamaterial absorber,” J.Commun. Eng., 2014, 3.
[16] Y. H.Ren, J. Ding, C. J. Guo, et. al., “Design of a quad-band wide-anglemicrowave metamaterial absorber,” J. Electron. Mater., 2016, 46.
[17] R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, and S. Matitsine, “Analysis and Design of an Ultra-ThinMetamaterial Absorber,” Progress in Electromagnetics Research, B, Vol.14, 407-429, 2009.
[18] Q. Cheng, T. J. Cui, W. X. Jiang and B. G. Cai, “An Electromagnetic Black Hole Made of Metamaterials,” New Journal of Phys. 2010.
[19] M. Abdalla and Z. Hu, “On the Study of Development of X-band Metamaterial Radar Absorber,” Advanced Electromagnetics, Vol.1, No. 3, PP94-98, Oct. 2012.
[20] D. Sood, C. C. Tripath, “Quad Band Electric Field –Driven LC – Resonator based Polarization Insensitive Metamaterial Absorber,” IET Microwaves, Antennas and Propagation, 2018, Vol.12, Iss. 4, pp. 977-985.
[21] K. R. Jha, G. Mishra, S. K. Sharma, “Design of a Compact Microwave Absorber Using a Parameter Retrieval Method for Wireless Communications Applications,” IET Microwaves, Antennas and Propagation, 2018, Vol.12, Iss 6, PP 977-985.
[22] G. Deng T. Xia, J. yang, Z. Yin, “Triple-band Polarization-independent Metamaterial Absorber at mm Wave Frequency Band,” IET Microwaves, Antennas and Propagation, 2018, Vol.12, Iss7, PP 1120-1125.
[23] Jeremiah P. Turpin, Jeremy A. Bossard, Kenneth L. Morgan, Douglas H. Werner, and Pingjuan L. Werner, “Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications,” International Journal of Antennas and Propagation,Vol. 2014 (11), PP.1-18.
[24] H. Y. Zheng,1 X. R. Jin, J. W. Park, Y. H. Lu, Joo Yull Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Optics Express, Vol. 20, No. 21, 2012
[25] Jie Zhao, Qiang Cheng, Jie Chen, Mei Qing Qi, Wei Xiang Jiang and Tie Jun Cui, “A tunable metamaterial absorber using varactor diodes,” New Journal of Physics 15 (2013) 043049 (11pp).
[26] Olli Luukkonen, Filippo Costa, Constantin R. Simovsk, Agostino Monorchio, and Sergei A. Tretyakov, “A Thin Electromagnetic Absorber for Wide Incidence Angles and Both Polarizations,” IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, PP. 1-6, Oct. 2009.