
Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

137

AA PPrrooppoosseedd MMeettaa--HHeeuurriissttiicc AApppprrooaacchh ffoorr CClloouuddlleettss

SScchheedduulliinngg iinn CClloouudd CCoommppuuttiinngg EEnnvviirroonnmmeenntt

Aida A. Nasr*, Nirmeen A. El-Bahnasawy*, Gamal Attiya* and Ayman EL-

SAYED*

*Dept. of Computer Science and Eng., Faculty of Elect., Eng., Menoufia University.

(Received: 4 Mar. 2018 – Accepted: 21 Jun. 2018)

AAbbssttrraacctt

This paper presents a new hybrid approach, called ACOSA, for
cloudlets scheduling to enhance the scheduler behavior in Cloud
computing (CC) environment and to overcome the results
oscillation problem of the existing meta-heuristic scheduling
algorithms. The proposed approach combines both the Ant
Colony Optimization (ACO) and Simulated Annealing (SA)
algorithm to improve both quality of solutions and time complexity
of the scheduling algorithm. The proposed approach is evaluated
by using the well-known CloudSim, and the results are compared
with the ant colony and simulated annealing separately in terms of
schedule length, load balancing, and time complexity. It
decreases the schedule length by 29.75% with SA and 12.25%
with ACO. The ACOSA provides higher load balancing degree. It
improves the balancing degree ratio by 36.36% than SA and
12.13% than ACO algorithms.

11.. IInnttrroodduuccttiioonn

Cloud computing platform is a novel kind of shared resources. It provides

large pools of resources and let end users to use these resources over the

Internet [1-3]. Users can get everything in cloud environment as a service

such as Software as a Service (SaaS), Infrastructure as a Service (IaaS),

and Platform as a Service (PaaS). Providers, like amazon EC2, permit

their clients to assign, access, and manage a group of virtual machines

(VMs) that run inside the data centers and only charge them for the period

of using the machines. Therefore, management of cloud resources is

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

138

critical, especially when several cloudlets (i.e. is the object that refer to

tasks) are submitted simultaneously to (CC) environment.

Nowadays, (CC) becomes an efficient paradigm, as it presents high-

performance computing resources to solve large-scale scientific and

engineering problems. However, one of the important issues that degrade

cloud-computing performance is cloudlets scheduling. This problem is

characterized by the presence of limited number of VMs on which several

cloudlets have to be executed. Therefore, the main goal is to search for

good schedule of the cloudlets on the VMs to minimize the execution cost

or schedule length.

Several researchers have developed algorithms to solve the cloudlets

scheduling issue [4-8]. However, most of the existing algorithms consider

schedule length, and disregard several constraints that may affect the

scheduling process like memory and processing load constraints. In

addition, most of the existing algorithms have a common oscillation

problem. That is, for the same cloudlets scheduling problem, the obtained

results of most meta-heuristic algorithms change with each running time.

In other words, because of random solution and random values that used

in meta-hubristic algorithms, results are oscillated with the running times.

This paper presents a new hybrid approach for cloudlets scheduling in

(CC) environment to improve the performance of (CC) and solve the

oscillation problem. The proposed algorithm, called ACOSA, combines

both the Ant Colony Optimization (ACO) and the Simulated Annealing

(SA) algorithm. Indeed, the proposed algorithm takes into consideration

the requirements of different cloudlets and the availability VMs resources.

That is, it takes both the memory and processing load constraints. The

proposed approach is evaluated by using the well-known CloudSim [9],

and the results are compared with ant colony and simulated annealing

algorithms separately in terms of schedule length and time complexity.

The remainder of this paper is organized as follows. Section 2 introduces

(CC) and cloudlet scheduling problem. Section 3 illustrates the

formulation of scheduling problem as an optimization problem. Section 4

describes the existing scheduling techniques, while Section 5 presents the

proposed approach. Section 6 presents the simulation results while Section

7 presents the conclusion of this research work.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

139

22.. CClloouudd CCoommppuuttiinngg aanndd CClloouuddlleett SScchheedduulliinngg

PPrroobblleemm

The main components of cloud computing scheduler are: User/client,

cloud information system, scheduler, and VMs [10]. The relationship

between the scheduler components is shown in Figure 1. Client submits

his/her cloudlet(s) to cloud to be executed. Information system is

responsible for collecting all information about cloudlets and resources.

This component is very important as it provides the necessary information

of cloudlets that arrived at (CC) environment for execution purpose. This

information includes cloudlet length, arrival time and resources

requirements. The information system also detects the resources

availability in the cloud-computing environment. Datacenter broker

includes the scheduler that responsible for scheduling the cloudlets onto

the VMs. It is the backbone of scheduling process. It determines the

execution order of each cloudlet. VMs are the main components in (CC)

environment that are responsible for execution of cloudlets and return the

results.

Figure 1: Components of cloud computing environment [10].

In (CC) environment, several cloudlets arrive to the system at the same

time. Each cloudlet needs to be assigned into a suitable VM to be executed

in a shortest time. However, because the number of available VMs is less

than the number of submitted cloudlets, a scheduling algorithm is required

to schedule the cloudlets onto the available VMs. This problem is called

cloudlets scheduling problem. Briefly, given a set of n cloudlets to be

executed on m VMs in the cloud-computing environment. The cloudlets

require certain resources and have computational capacity requirements.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

140

On the other hand, the VMs have limited resources as memory and

processing power. Thus, the purpose is to schedule the cloudlets onto the

VMs such that the schedule length is minimized, the requirements of

cloudlets are met, and the capacities of the VMs resources are not

violated. In other words, cloudlets should be scheduled efficiently to

reduce the execution cost and time.

33.. PPrroobblleemm FFoorrmmuullaattiioonn

The cloudlet-scheduling problem may be formulated as an optimization

problem to be solved by optimization approaches. Designing a

mathematical model to the cloudlet-scheduling problem involves two

steps; (i) formulate a cost function to represent the objective of the

cloudlets scheduling, (ii) formulate set of constraints in terms of the

cloudlets requirements and the availability of the VMs resources.

To formulate the scheduling problem, let n be the number of cloudlets, m

is number of VMs, be the processing time of cloudlet i on machine v,

and is a binary variable such that is 1 if the cloudlet i is assigned to

machine v and 0 otherwise as shown in eq. (1).

 (1)

The cloudlet scheduling problem may be formulated mathematically as:

Subject to

1

1

1

1, (3)

 (4)

(5)

m

iv

v

n

i iv v

i

n

i iv v

i

x cloudlet i

EC x L VM

m em x M em VM







 

 

 







The main objective of the mathematical model is formulated, in eq. (2), to

reduce the execution time. Indeed, several constraints are formulated to

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

141

meet the requirements of cloudlets and not violate the availability of

virtual resources. The first constraint, eq. (3), guarantees that each cloudlet

i is assigned to exactly one virtual machine v. The second constraint, eq.

(4), guarantees that the total requirements of total execution time EC of

the cloudlets assigned to a VM don’t exceed the load Lv of that VM. The

third constraint, eq. (5), guarantees that memory requirements of

scheduled cloudlets should not exceed the maximum available memory of

running VM.

44.. RReellaatteedd WWoorrkk

Recently, many scheduling methods are developed to address scheduling

issue. They may be classified into static and dynamic scheduling [11]. In

static scheduling, all cloudlets arrive simultaneously and all cloudlets

schedule first before execution. In dynamic scheduling, cloudlets arrive at

different time slots, and they schedule are based on the state of VMs. Two

kinds of scheduling methods are proposed; heuristic methods and meta-

heuristic methods. Heuristic methods use the predictions to achieve a near

optimal solution [12-17]. These methods often have low time complexity,

but they provide high schedule length. Contrary to heuristic-based, the

meta-heuristic methods search the solution space in a direct manner and

produce efficient results on the broad domain problems, but these methods

have high time complexity. Meta-heuristic algorithms are also called

guided-random search-based methods [18-30].

In (CC) environment, the famous heuristic cloudlet-scheduling algorithm

is First-Come First-Serves (FCFS) [12]. In FCFS, all cloudlets are queued

in a queue and then assigned to computing resources once they become

available based on the arrival time. The FCFS is easy to implement but it

provides high time complexity. In [13], a heuristic cloudlet-scheduling

algorithm called greedy algorithm is presented. This algorithm first orders

the arrived cloudlets in descending order according to its lengths. Then, it

schedules cloudlets onto the VMs to minimize the finish time. Greedy

algorithm provides near optimal solution and has low time complexity.

Another heuristic cloudlet-scheduling algorithm, called Min-Min

algorithm, is proposed and tuned in [14,15]. The Min-Min algorithm

computes minimum completion time of each cloudlet overall VMs. Then,

it assigns the cloudlet to VM that achieves minimum completion time. The

algorithm iterates until all cloudlets are scheduled. The Min-Min

algorithm doesn’t consider the system load balancing because it assigns

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

142

smaller cloudlets in faster VMs. Another heuristic cloudlet-scheduling

algorithm, called Max-Min algorithm, is proposed and tuned in [16,17]. It

selects the cloudlet with the longest completion time and assigns it to the

VM that gives minimum completion time. Therefore, the Max-Min is

more efficient than Min-Min algorithm as it considers the system load

balancing [11].

On the other hand, Genetic Algorithm (GA) is most famous technique for

guided-random-search-based scheduling techniques [23]. It improves the

scheduling results in term of schedule length. However, the time

complexity is high. Another metaheuristic cloudlet-scheduling algorithm

is Simulated Annealing (SA) [24-26]. It has smaller time complexity than

GA. In [26], X. Liu and J. Liu developed new cloudlet scheduling

algorithm for (CC) based on SA and greedy. The algorithm uses greedy

strategy as initial stage to get near optimal solution and then improve the

solution by SA. Other meta-heuristic algorithms developed to solve the

scheduling issue are Particle Swarm Optimization (PSO) [27, 28] and Ant

Colony Optimization (ACO) [29].

55.. PPrrooppoosseedd AApppprrooaacchh

This section presents a new hybrid approach, called Ant Colony

Optimization with Simulated Annealing (ACOSA), for cloudlets

scheduling in (CC) environment. The proposed approach combines both

the Ant Colony Optimization (ACO) and Simulated Annealing (SA)

algorithms. The developed ACOSA approach exploits low time

complexity of SA algorithm and the efficient way of the ACO algorithm

for searching the near optimal solution. In addition, the ACOSA approach

overcomes the drawback of the ACO that occurs in the first stages due to

the absence of pheromone by generating an initial solution using the

greedy algorithm. Briefly, the new ACOSA approach consists of three

stages: initialization stage, ant-colony optimization stage, and simulated

annealing stage.

5.1 Initialization Stage

In this stage, the ACOSA generates an initial solution by using the greedy

algorithm to improve the efficiency of ACO search algorithm in the

second stage. The greedy algorithm sorts the cloudlets according to their

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

143

lengths by descending order. Then, it selects the VM that minimizes the

finish time of executing the cloudlet.

5.2 Ant Colony Optimization Stage

The ACOSA applies the Ant Colony Optimization (ACO) algorithm to

generate new solution. The ACO takes its characteristics from the ability

of ant colony to find the shortest path between the food and their nest [29].

The ants interact by laying trails of pheromone. Ants choose their path by

using Probability (P) that depends on pheromone trails on the ground. The

higher the pheromone trail within a particular direction means higher

probability of choosing this direction. The ACO works as shown in Fig. 2.

1. Pheromone initialization

When a cloudlet i assigned to a VMv, a new path is created with

pheromone trial iv. By using the greedy scheduling solution, the

algorithm assigns each ant on a specific VM according to the same order

of initial solution. Then, it initializes the pheromone trial for each edge

according to eq. (6):

(VM)
(0) (6)

_

k v

iv c

i

M IPS

task length
  

Where, (0) is the pheromone trial value at initial iteration t=0 for ant k,

and is constant.

2. Virtual machine selection for next cloudlet

Each ant applies the probability P in eq. 7 to select a VM for next cloudlet.

(t)
(t) if v allow ed (7)

(t)

k

iv iv

k

is is

s allow ed

k

iv
P



  
 

  

 0 Otherwise

 Where, iv is the pheromone trial of cloudleti in VMv, allowedk is the

available VMs of antk that are not chosen yet for any cloudlet by the ant.

The VMs that are chosen are stored in tabuek. iv= 1/div is heuristic

information representing the visibility of antk at iteration t, where div is the

expected execution time and transfer time of cloudleti at VMv.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

144

3. Pheromone updating

After each ant creates a path, it updates the local pheromone of this path

by eq. 8.

(t) if (i,v) T () (8)
(t)

k k

iv k

Q
t

L
  

0 Otherwise

Where, T
k
(t) represents Tabuk (the collection of VMs that antk visited) at

iteration t, L
k
 (t) is the expected schedule length of antk and Q is a control

parameter. After generating new solution, the global pheromone updates

by the eq. 9.

(t 1) (1 (t) (t) (9)
iv iv iv

       

Where, [0-1] is the trial volatility coefficient, and (t)
iv

 is computed

by
0

(t)

n

k

iv iv

k

 


   .

An Iteration of Ant Colony Optimization (ACO) Algorithm
1. Assign y ants on m VMs according to the initial greedy solution

2. Initialize iv for each rout between cloudleti and VMv

3. While cloudlet-list is not empty repeat

4. For k=0 to y

5. Antk selects a suitable VMv for the selected cloudleti according to Piv
k
 (T)

6. Insert VMv in Tabuk and remove it from allowedk

7. Remove the selected_cloudlet from cloudlet_list

8. Update local pheromone

9. End For

10. End while

11. Update global pheromone

Figure 2: Ant Colony Optimization Algorithm

5.3 Simulated Annealing Stage

Simulated annealing (SA) is a global optimization technique that attempts

to find the lowest point in energy landscape [31]. The idea of this method

was derived from how a regular crystalline structure is generated by

cooling molten metal slowly. The distinctive feature of the SA algorithm

is that it incorporates random jumps to potential new solutions. This

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

145

ability is controlled and reduced as the algorithm progresses. Clearly, the

SA emulates the physical concepts of temperature and energy to represent

and solve the optimization problems.

The objective function of the optimization problem is treated as the energy

of a dynamic system while the temperature is introduced to randomize the

search for a solution. The state of the dynamic system being simulated is

related to the state of the system being optimized. Firstly, the system is

started at a high temperature Temp and is then slowly cooled through a

series of temperature levels. At each level, the algorithm searches for the

system equilibrium state through elementary transformations which will

be accepted if they reduce the system energy. The probability of a new

solution acceptance is exp(/Temp). It is a function of the temperature and

the magnitude of the increasing .

5.4 ACOSA hybrid Approach

The developed ACOSA approach is shown in Figure 3. The algorithm

starts by applying the greedy algorithm to obtain an initial solution, and

then it computes the energy (schedule length) Es at the initial solution.

After setting the parameters of ACO: the number of ants y, and initial

pheromone trial iv, by using the initial solution, the ACOSA algorithm

generates a new solution called opt solution by applying the ACO

algorithm, and then it calculates energy Eopt of the solution. SA algorithm

is starting from step 9.

After setting an initial temperature Temp, the ACO algorithm is used again

to generate a new solution and compute the corresponding energy Enew. If

the energy Enew at the new solution is lower than the current energy Es,

then the new solution is accepted as a current solution. Otherwise, a

probability function exp(− /T) is evaluated to determine whether the new

solution may be accepted as a current solution or not, where = Enew − Es .

In step 22, the ACOSA algorithm checks if the ACO algorithm works

efficiently or not. If Es of the current solution is less than Eopt, the ACO

generates a new solution. At this moment, ACOSA algorithm continues by

repeating SA algorithm and generating more solutions. Otherwise, the

algorithm stops and returns the Opt solution as the best solution. This way

decreases the time complexity of the algorithm.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

146

Proposed ACOSA Approach

1. Generate Initial solution by applying the greedy algorithm

2. Set Current solution=initial solution

3. Calculate Es

4. Initialize number of ants y

5. Initialize t=0

6. Initialize i,v(t) by using current solution

7. Generate Opt_Solution by applying ACO algorithm

8. Calculate Eopt

9. Initialize SA parameters, Temp0 and calling rate [0-1]

10. t=t+1

11. Generate new solution by applying ACO algorithm

12. Calculate Enew

13. Calculate = Enew – Es

14. If

15. Es= Enew and Current Solution=New Solution

16. Else

17. Generate a random value r [0-1]

18. If (r < exp(- /Temp))

19. Es= Enew and Current Solution=New Solution

20. End if

21. End if

22. If Es Eopt

23. Eopt = Es and Opt_Solution =Current_Solution

24. Set Temp=

25. If(Temp >1)

26. Go to step (10)

27. Else

28. Return Current_Solution

29. End if

30. Else

31. Current_Solution= Opt_Solution

32. Return Current_Solution

33. End if

Figure 3: Proposed ACOSA Approach for cloudlet Scheduling

5.5 Time Complexity

The time complexity of the proposed ACOSA approach may be calculated

as the summation a time complexity of stage 1, 2, and 3. In stage 1, the

ACOSA uses the greedy algorithm to generate new solution with time

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

147

complexity O (n log n+ nm). In stage 2, the ACOSA applies one iteration

of the ACO algorithm with time complexity O(n m y). In stage 3, the

ACOSA repeats SA to generate new solution by ACO algorithm. This

stage has a time complexity O(tmax * time complexity of ACO). The

overall time complexity of the ACOSA algorithm is O((n log n+ nm)+

tmax n m y) = O(n(log n +2m)), where tmax<10 and y=30.

 On the other hand, the time complexity of the ACO algorithm depends on

the number of iterations, number of cloudlets, and number of VMs. It has

time complexity equal to O(gmax n m y), where gmax is the maximum

number of generations, often gmax ≥200. While the time complexity of SA

depends on three factors. The first factor is the number of iterations, the

second is the number of cloudlets, and the third is number of VMs. It has

time complexity O(itr n m), where itr is the number of iterations often

itr>600 at temperature 1000 and cooling rate .01. To obtain a best

solution with SA and ACO, itr and gmax should be very high. However, if

the number of iterations increases, time complexity will increase. This

makes the scheduling process takes more time to schedule large number of

cloudlets.

The developed algorithm achieves low time complexity by avoiding the

drawbacks of other algorithms using two strategies:

 It uses the greedy algorithm to generate the initial solution as near

optimal solution.

 It stops repeating, when it achieves the optimal solution, so it doesn’t

depend on the number of iteration. Because the number of iterations is

very low on the contrary to SA and ACO algorithms.

5.6 The Oscillation Problem

Because the initial solutions of both the ACO and the SA are generated

randomly, these algorithms provide different solutions with different

makespans for different running times for the same scheduling problem.

This is called the oscillation problem. The oscillation problem causes

finding solution with high makespan. No one can guarantee specific

solution for the scheduling problem. That means we will find solutions

with low makespan and another with high makespan for the same

scheduling problem. Because the problems may repeat, the oscillation

problem affects on the results of the meta-heuristic algorithms. The

proposed ACOSA approach overcomes this problem and provides only

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

148

one solution for the same problem at different running times. Figure 4

shows the obtained results of applying three different algorithms 15 times

to solve a cloudlet scheduling problem. In this example, the number of

cloudlets (n) =100, the number of VMs (m) = 8, and the initial values of

the required parameters are: Temp=1000, =0.01, y=30, =0.5, c=0.3.

we use these initial values because they are excited in [26,29] (the

references of related work) . From Figure 4, the new algorithm ACOSA is

better than the other algorithms. It has constant makespan =50 Sec, while

the makespan of SA algorithm oscillates from 100 Sec to 230 Sec and the

makespan of the ACO oscillates from 90 Sec to 176 Sec.

Figure 4: The results oscillation of scheduling 100 cloudlets into 8VMs.

66.. SSiimmuullaattiioonn RReessuullttss

To evaluate the performance of the proposed hybrid cloudlet scheduling

approach (ACOSA), the well-known CloudSim is used to simulate the

cloud-computing environment. The results of the proposed ACOSA

approach are compared with the Simulated Annealing (SA) and the Ant

Colony Optimization (ACO) separately in terms of schedule length, load

balancing and time complexity.

The simulation environment is a 64-bit windows 7 operating system

installed in laptop core i5 with 8 GB RAM. In addition, a list of random

independent cloudlets is generated with lengths from 1000 MI to 10,000

MI and a list of VMs is generated with MIPS in the range [100-1000]. The

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

149

initial values of the ACOSA parameters are y=30, =0.5, c=0.3,

Temp=1000, =0.01.

6.1 Schedule length

Schedule length is the execution time at maximum loaded VM. Figures 5,

6, 7 and 8 show schedule length of scheduling different cloudlets by three

different algorithms at 2, 4, 8, and 16 VMs respectively. From Figures 5,

6, 7 and 8, the ACOSA is more efficient than SA and ACO algorithms in

terms of schedule length. The developed ACOSA has low schedule length

than both the SA and the ACO algorithms. It improves schedule length by

29.75% with SA and 12.25% with ACO. This is because; the ACOSA

depends on logical steps to achieve the near optimal solution. It does not

start with any random solutions like SA and ACO algorithms. In addition,

the developed algorithm stops generating new solutions, if the current

solution is not improved than the previous solution for 4 iterations.

Figure 5: Schedule Length of Different Algorithms vs. Number of Cloudlets for 2 VMs.

Figure 6: Schedule Length of Different Algorithms vs. Number of Cloudlets for 4 VMs.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

150

Figure 7: Schedule Length of Different Algorithms vs. Number of Cloudlets for 8 VMs.

Figure 8: Schedule Length of Different Algorithms vs. Number of Cloudlets for 16 VMs.

6.2 Balancing Degree

Balancing Degree (BD) measures the degree of workload distribution of

cloudlets on the available VMs. To calculate this ratio, let define an

eclecticism solution by the ideal solution that achieves the lowest schedule

length. The system can achieve the lowest schedule length (Best solution)

if and only if the next conditions are achieved:

i. VMs execute number of cloudlets that have MI per second exact

equal the amount of MIPS or multiples for those VMs.

ii. The finishing times for all VM are equal, after scheduling all

cloudlets.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

151

If the system achieves the two conditions, the system will be balanced

with 100% balancing degree.

Eclecticism Solution Length (ESL) can be calculated by:

() / ESL s Total M I Total M IPS

ESL is less than the schedule length. We can compute BD from the

following equation: (s) /BD ESL M akespan

Figures 9, 10, 11 and 12 show the balancing degree of scheduling different

cloudlets by three different algorithms at 2, 4, 8, and 16 VMs respectively.

According to the definition of BD, we find that the ACOSA has higher

BD ratio than SA and ACO algorithms, because it achieves lower

schedule length. The developed ACOSA improves BD ratio with 36.36%

than SA and 12.13% than ACO algorithms.

Figure 9: Balancing Degree by Different Algorithms on 2 VMs.

Figure 10: Balancing Degree by Different Algorithms on 4 VMs.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

152

Figure 11: Balancing Degree by Different Algorithms on 8 VMs.

Figure 12: Balancing Degree by Different Algorithms considering 16 VMs.

6.3 Computation Time complexity

Figures 13, 14, 15 and 16 show running time of scheduling different

cloudlets by three different algorithms at 2, 4, 8, and 16 VMs respectively.

From Figures 4, 5, 6 and 7, the ACOSA has running time than SA and

ACO algorithms. The developed ACOSA decreases running time 64.5%

than SA and 98.7% than ACO algorithms.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

153

Figure 13: Computation Time of Different Algorithms for 2 VM.

Figure 14: Computation Time of Different Algorithms for 4 VM.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

154

Figure 15: Computation Time of Different Algorithms for 8 VM.

Figure 16: Computation Time of Different Algorithms for 16 VM.

77.. CCoonncclluussiioonnss

In this paper, a new hybrid cloudlet scheduling approach called ACOSA is

proposed for (CC) environment considering both the resources availability

and cloudlets requirements. The proposed ACOSA approach enhances the

overall system performance. It achieves four goals: the first is minimizing

schedule length of the cloudlets, the second is keeping the system in high

balancing degree, the third is minimizing the time complexity of the

scheduling algorithm, and the fourth is solving the results oscillation

problem. By comparing the new ACOSA with the Simulated Annealing

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

155

(SA) and Ant Colony Optimization (ACO) algorithms, the new approach

is more efficient than those algorithms. The experimental results show that

the ACOSA achieves lower schedule length than the SA and the ACO

algorithms. It decreases the schedule length by 29.75% with SA and

12.25% with ACO. The ACOSA provides higher load balancing degree. It

improves the balancing degree ratio by 36.36% than SA and 12.13% than

ACO algorithms. In addition, the ACOSA achieves low computation time

complexity. It decreases running time 64.5% than SA and 98.7% than

ACO algorithms.

RReeffeerreenncceess

[1] https://www.ibm.com/cloud-computing/learn-more/what-is-cloud-

computing/ accessed at 21 June 2018.

[2] Hamdaqa, Mohammad, and L. Tahvildari. "Cloud computing uncovered: a

research landscape." In Advances in Computers, vol. 86, pp. 41-85.

Elsevier, 2012.

[3] L. Mei, W.K. Chan, and T.H. Tse, “A Tale of Clouds: Paradigm

Comparisons and Some Thoughts on Research Issues”, Proceedings of the

APSCC 2008, pp. 464-469, 2008.

[4] H. Yuan, J. Bi, W. Tan and B. Li, “Temporal Task Scheduling With

Constrained Service Delay for Profit Maximization in Hybrid Clouds”,

IEEE Transactions on Automation Science and Engineering, Vol. 14, pp.

337-348, 2017.

[5] A. Abbasi-Tadi, M. Khayyambashi, and H. Khosravi-Farsani, “Data center

task scheduling through Biogeography-Based Optimization model with the

aim of reducing makespan”, The 6th International Conference on

Computer and Knowledge Engineering (ICCKE), pp. 41 - 47, 2016.

[6] A. A. Nasr, N. A. EL-Bahnasawy, and A. El-Sayed, “task scheduling

optimization in heterogeneous distributed system”, International Journal of

Advanced Computer Science and Applications(IJAACSAA), Vol. 7, No.

4, pp. 88-96, 2014.

[7] A. A. Nasr, and S. A. Elbooz. "Scheduling Strategies in Cloud Computing:

Methods and Implementations." (2018).

[8] A. A. Nasr, N. A. EL-Bahnasawy, and A. El-Sayed, “Performance

Enhancement of Scheduling Algorithm in Heterogeneous Distributed

Computing Systems”, International Journal of Advanced Computer

Science and Applications(IJAACSAA), Vol. 6, No. 5, pp. 88-96, 2015.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, and C. A. F. De Rose,

“CloudSim: A toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms,”

Software Practice and Experience, vol. 41, no. 1, pp. 23–50, August 2010.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

156

[10] A. A. Nasr, N. A. EL-Bahnasawy, G. Attiya and A. El-Sayed, “Using the

TSP Solution Strategy for Cloudlet Scheduling in Cloud Computing”,

Journal of Network and Systems Management, pp. 1-22, 2018.

[11] T. Mathew, K. Sekaran, and J. Jose, “Study and Analysis of Various Task

Scheduling Algorithms in the Cloud Computing Environment”,

Proceedings of the International Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 658-664, 2014.

[12] T. Chatterjee, VK. Ojha, M. Adhikari, S.Banerjee, U. Biswas, and V.

Snáše, “Design and Implementation of an Improved Datacenter Broker

Policy to Improve the QoS of a Cloud”, Proceedings of the 5th

International Conference on Innovations in Bio-Inspired Computing and

Applications IBICA, pp. 281-290, 2014.

[13] Z. Zhong, K. Chen, X Zhai, and S. Zhou, “Virtual machine-based task

scheduling algorithm in a cloud computing environment”, Tsinghua and

Technology, pp. 660-667, 2016.

[14] H. Chen, F. Wang, N. Helian, and G. Akanmu, “User-priority guided Min-

Min scheduling algorithm for load balancing in cloud computing”,

National Conference on Parallel Computing Technologies

(PARCOMPTECH), October 2013, pp. 1-8.

[15] T. Kokilavani, and GA DI. “Load Balanced Min-Min Algorithm for Static

Meta-Task Scheduling in Grid Computing", International Journal of

Computer Applications, Vol. 20, No. 2, PP. 43-49, 2011.

[16] K. Etminani, and M. Naghibzadeh, “A Min-Min Max-Min selective

algorihtm for grid task scheduling”, IEEE/IFIP International Conference in

Central Asia on Internet, pp.1-7, Tashkent, Uzbekistan ,September 2007.

[17] S. Devipriya, and C. Ramesh, “Improved Max-min heuristic model for task

scheduling in cloud”, Proceedings of the International Conference on

Green Computing, Communication and Conservation of Energy (ICGCE),

IEEE, pp. 883-888, Chennai, India , December 2013.

[18] SH. Adil, K. Raza, U. Ahmed, S.S.A Ali, and M. Hashmani, “Cloud task

scheduling using nature inspired meta-heuristic algorithm”, International

Conference on Open Source Systems & Technologies (ICOSST), pp. 158-

164, Lahore, IEEE, Pakistan, Dec 2015.

[19] M.A Tawfeek, A El-Sisi, A. E. Keshk, and F A Torkey, " Cloud task

scheduling based on ant colony optimization" In Computer Engineering &

Systems (ICCES), Des. 8th International Conference on (pp. 64-69). IEEE,

Cairo, Egypt , Nov. 2013.

[20] S Sindhu, S Mukherjee " A genetic algorithm based scheduler for cloud

environment" In Computer and Communication Technology (ICCCT), 20

(pp. 23-27). IEEE, Allahabad, India , Sep 2013.

[21] M. Agarwal, and G. M. S. Srivastava, “A genetic algorithm inspired task

scheduling in cloud computing”, Proceedings of the International

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

157

Conference on Communication and Automation (ICCCA),IEEE, Noida,

India April 2016.

[22] I. Kar, R.N.R. Parida, and H. Das, “Energy Aware Scheduling using

Genetic Algorithm in Cloud Data Centers”, Proceedings of the

International Conference on Electrical, Electronics, and Optimization

Techniques (ICEEOT), IEEE, Chennai, India, 2016.

[23] S. Singh, and M. Kalra, “Scheduling of Independent Tasks in Cloud

Computing using Modified Genetic algorithm,” Proceedings of the

International Conference on Computational Intelligence and

Communication Networks (CCIN), IEEE, pp.565-569, Bhopal, India,

November 2014.

[24] M. Houshmand, E Soleymanpour, H Salami, M Amerian, and H Deldari,

“Efficient Scheduling of Task Graphs to Multiprocessors Using a

Combination of Modified Simulated Annealing and List Based

Scheduling”, Proceedings of the 3rd International Symposium on

Intelligent Information Technology and Security Informatics (IITSI),

IEEE, Jinggangshan, China, April 2010.

[25] H. Bonan, W. Xia, Y. Zhang, J. Zhang, Q. Zou, F. Yan, and L. Shen. "A

task assignment algorithm based on particle swarm optimization and

simulated annealing in Ad-hoc mobile cloud." In Wireless

Communications and Signal Processing (WCSP), 2017 9th International

Conference on, pp. 1-6. IEEE, Nanjing, China, December 2017.

[26] X. Liu, and J. Liu, “A Task Scheduling on Simulated Annealing Algorithm

in Cloud Computing”, International Journal of Hybrid Information

Technology (IJHIT), Vol. 9, No. 6, pp. 403-412, 2016.

[27] K. K. Raja, P. Sengottuvelan, and J. Shanthini. "A hybrid approach of

genetic algorithm and multi objective PSO task scheduling in cloud

computing." Asian Journal of Research in Social Sciences and

Humanities 7, no. 3 : 1260-1271, 2017.

[28] A. Awad, N. EL-Hefnawy, and H. Abdel_Kader, “Enhanced Particle

Swarm Optimization For Task Scheduling In Cloud Computing

Environment”, International Conference on Communication, Management

and Information Technology (ICCMIT), Elsevier, pp. 920-929, 2015.

[29] Liu, C. Y., Zou, C. M., & Wu, P "A task scheduling algorithm based on

genetic algorithm and ant colony optimization in cloud computing"

In Distributed Computing and Applications to Business, Engineering and

Science (DCABES), IEEE , pp. 68-72, November 2014.

[30] J. Xu, A. Lam, and V. Li “Chemical reaction optimization for the grid

scheduling Problem”, Proceedings of the International Conference on

Communications, ICC, pp. 1–5, South Africa, May 2010.

[31] E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines, Wiley,

New York, 1989.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019

__

158

 الملخص باللغة العربية

