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Abstract—The traditional defect detection techniques have 

poor detection accuracy and are strongly influenced by the 

industrial imaging environment. Concentrating on this 

shortcoming, this study presented a hybrid Deep Learning (DL) 

approach for automatic weld defects classification in Gamma 

Radiography Images (GRIs). We focus on improving accuracy by 

fusion and selection of deep-learned features extracted from five 

different DL models (e.g. SqueezeNet, GoogleNet, ShuffleNet, 

DarkNet19, and MobileNet-V2). To extract robust features from 

the DL models, the Pearson Correlation Coefficient (PCC), F-

score (FS), and ReliefF (RF) feature selection algorithms are 

evaluated. The RF algorithm achieved the best result. The 

selected features are used for classification tasks using a 

Multiclass K-Nearest Neighbors (MKNN) classifier. Eight main 

types of weld defects and the normal type are considered in the 

utilized RGIs dataset. Several experiments are performed using 

the traditional feature extraction methods, DL methods, feature 

selection algorithms, and the proposed one. Their results are 

compared to evaluate the performance of the presented system. 

Several RF feature subsets were tested, and the 450-feature 

subset with the best classification performance was found. The 

results confirmed that the suggested strategy performs better 

than all traditional and DL methods with an overall classification 

accuracy (CA) of 99.75%.  
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I. INTRODUCTION 

he demand for different industries to have high-quality 

weld structures is increasing nowadays, and hence it is 

essential to inspect these structures using methods of 

Non-Destructive Testing (NDT). The objective of these tests is 

to ensure highly reliable structures that maintain their 

competitiveness in markets. There are numerous industries, 

including nuclear, naval, chemical, and aerospace ones, that 

recognize X-ray testing as necessary for the quality control of 

welded joints as an NDT technique.  

The use of NDT techniques to evaluate welded components 

is critical to ensure consistent performance. Ultrasonic 

imaging, radiography, and magnetic resonance imaging are the 

most often used modalities of NDT. Several scholars have 

conducted a thorough analysis and a contrast between these 

approaches. Radioisotopes have different NDT applications in 

the industry; one of these applications is Gamma Radiography 

Testing (GRT), which determines the quality of a weld by 

measuring the radiographs of welded components. GRT 

differs from previous approaches in that it is faster and less 

expensive, and it may be performed comprehensively and non-

invasively. GRT differs from previous approaches in that it is 

faster and less expensive, and it may be performed 

comprehensively and non-invasively. GRT uses gamma 

radioisotopes in radiographic films to detect faults in welding 

materials. The obtained radiographic films are then analyzed 

by a professional operator or automatically using image 

processing algorithms where images are first digitized and 

then enhanced using different processes. Finally, the weld is 

classified using methods of detection and recognition. Various 

methods and approaches have been used by various 

researchers to study defect identification using radiography 

images. 

Blowholes and cracks are the most internal defects that 

occur inside the welded assemblies and frameworks, so 

gamma radiography was introduced like X-ray radiography for 

weld defect detection [1]. Welded constructions must also be 

non-destructively evaluated with gamma rays, X-rays, eddy 

current, liquid penetrant, or ultrasonic testing. Radiographic 

inspection is a widely used NDT tool for searching for internal 

defects in welded structures. This technique is based on the 

premise that γ rays can penetrate through opaque substances 

like metal, which are invisible to light. [2]. Typically, 
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radiographic films are fairly dark. They have a comparatively 

high density. Therefore, using a radiograph, a standard scanner 

cannot provide adequate illumination. Gamma rays also create 

photographic records through the radiant energy that is 

transmitted. Hence, more energy is consumed by the defective 

areas. Consequently, penetrated γ-rays on the receiving films 

display differences in intensity. Thus, the defects in the image 

appear darker [3]. An explanation for the image context is the 

small variety of intensities the image capture system can 

handle. The noise pixels' grey level values are also much 

greater than those of their near neighbors. However, there is a 

significant bias towards the darker side in the distribution of 

grey levels in the original radiography image. As a result, 

these flaws are rarely noticeable. Consequently, the backdrop 

in the image is depicted by these dark regions. However, this 

noise is a representation of the high-frequency components of 

the image. As a result, it offers a method for examining a 

weld's interior structure. Compared to other methods, gamma 

radiography has many benefits [4]. It can be done more 

efficiently and cheaply, thoroughly, and non-invasively. GRT 

monitoring examines weld flaws in radiographic film 

materials using gamma radioisotopes [5]. 

Weld x-ray radiography images have been studied utilizing 

a variety of approaches and procedures for flaws detection and 

categorization. Multi-layer Perceptron Neural Network (MLP) 

approaches for classifying weld faults from simulated data 

were presented by Lim et al. [6]. The authors utilize six types 

of faults and 25 shape descriptors to discriminate between 

each class. The overall accuracy of 97.96% is obtained using 

17 selected efficient features. Valavanis et al. [3] used three 

different classifiers (e.g., Artificial Neural Network (ANN), 

KNN, and Support Vector Machine (SVM)) for weld flaws 

categorization from x-ray images. Forty-three features are 

extracted from each segmented image and selected represented 

geometrical and texture measurements. The six-defect type 

classification accuracy of 85.5% is obtained using ANN with 

3-fold cross-validation testing. An automatic detection 

approach of weld defects from radiography is presented in [7]. 

The process is based on image edge detection with an MLP 

classifier. To increase the identification accuracy of weld 

flaws, Liao et al. [8] used an Ant Colony Optimization 

(ACO)-based method for feature selection. The authors used 

four classifiers (e.g., nearest mean, KNN, fuzzy KNN, and 

center-based nearest neighbor) for the identification task. 

Hassan et al. [9] introduced a detection system of weld defects 

on radiographic images. The system consists of four steps: 

noise reduction and defects localization with maximum and 

minimum intra-class variance, geometric features extraction, 

and classification using ANN. To identify weld faults in 

radiographic images, [10] employs an Adaptive-Network-

based Fuzzy Inference System (ANFIS) and ANN. After 

image preprocessing, 12 geometrical features are extracted 

and fed to the classifiers. The obtained accuracies are 82.6% 

for the ANFIS and 78.9% for the ANN. Bhat et al. [11] 

proposed a classification technique of friction stir weld based 

on Discrete Wavelet Transform (DWT) and SVM. Three 

features are extracted from the DWT of sub-regions called 

variance, energy, and entropy and fed to SVM for 

classification. In [12], an automated detection method of 

welded joint defects from Radiographic Double Wall Double 

Image (DWDI) is presented. A feed-forward MLP classifier is 

used to classify DWDI as defective and non-defective with 

88% detection accuracy. Vishal et al. [13] reviewed the 

Artificial Intelligence (AI) techniques for welding radiography 

and ultrasonic image classification. The multivariate 

generalized Gaussian distribution (MGGD)-based finite 

mixture model was suggested by Nacereddine et al. [14] for 

weld radiography testing using certain steps, such as image 

preprocessing, image segmentation, features extraction, and 

defects classification steps of weld radiography testing. Four 

types of defects are considered. This method achieved more 

than 96% accuracy. A Deep Convolutional Neural Network 

(DCNN) is presented in [15] as an intelligent diagnosis system 

of weld X-ray images. Deep features are extracted and fed to 

MLP and fuzzy K-NN classifiers. The highest accuracy of 

97.2% is obtained. In [16], a method for detecting weld faults 

using triplet deep neural networks has been described. To 

simplify flaw detection, the original X-ray image is 

preprocessed into a relief image. The relief image function 

vector is then obtained by mapping using a deep network-

based triplet. It is essential that vectors with similar defect 

characteristics are closer together and that those with different 

types of defect features are farther apart. To achieve the 

automatic classification and identification of weld flaws, the 

defect classification model (SVM) is created in the end. 

To identify weld flaws and increase accurate detection in 

their dataset, a unique classification method based on DL pre-

trained network AlexNet topologies was developed [17]. To 

detect the welding images, a fine-tuning technique is used and 

is compared to the several pre-trained VGG-16, GoogleNet, 

VGG-19, ResNet50, and ResNet101 DCNN models as well as 

deep convolution activation features (DCFA). In [18], an 

approach for completely automatic weld segmentation and 

defect identification was proposed. Weld segmentation is 

performed using the DCNN FgSegNet, and fault detection is 

performed using the Neural Network (NN) with three 

convolution layers. Also, in [19, 20] transfer learning is 

employed with pretrained DCNNs for weld defect 

classification from X-ray radiography images. Four classes are 

classified in [19], and the parameters of the pre-trained 

VGG16 are adjusted to enhance the presented model 

performance. In [20], 14 types of weld defects are classified.  

Moreover, recent advances in DL have significantly 

enhanced automated weld defect detection in radiographic 

images, addressing the limitations of manual inspection. 

Studies comparing multiple CNNs architectures for 

classification tasks demonstrate that deeper networks like 

ResNet-101 achieve superior performance (85.71% accuracy) 

on the large-scale RIAWELC dataset (24,407 images), 

outperforming simpler models such as AlexNet and 

SqueezeNet [21]. For localized defect detection, Faster R-

CNN models have been adapted to handle challenging cases 

like small, sticky porosity in limited datasets (453 images), 

achieving 44.5% average precision (AP) through optimized 



Menoufia Journal of Electronic Engineering Research (MJEER), VOL. 34, NO. 2, July 2025 

 

69 

 

anchor boxes and data augmentation, though they lag behind 

classification-focused approaches in accuracy [22]. The state-

of-the-art Weld-CNN, a hybrid model combining sequential 

and parallel convolutional blocks, sets a new benchmark with 

99.83% test accuracy on the RIAWELC dataset, highlighting 

the efficacy of specialized architectures over transfer learning 

methods [23]. Collectively, these studies underscore the trade-

offs between classification accuracy, defect localization 

capability, and computational efficiency in industrial 

applications. 

Feature extraction is done with the VGG16 and ResNet50 

CNNs, and classification tasks are done with the SVM 

classifier. Using transfer learning, performance is improved 

while training time is reduced. The Convolutional Neural 

Networks (CNNs) and SVM methods are used in [24] to 

recognize welded joint defects in radiographic images. After 

morphological filtration, CNNs are utilized for feature 

extraction and primary classification. After that, the SVM is 

employed to precisely determine the limits of defects. Stephen 

et al. [25] presented an automatic approach for detecting weld 

defects in radiographic images. This method proposes a DL-

based approach to identify 4 types of welding defects from 

200 x-ray images. DA technique is applied to get better 

generalization performance. Results show that 95% validation 

accuracy was obtained. 

The detection and categorization of weld defects from GRIs 

was the subject of fewer researchers. In [23], a cepstral 

approach is suggested for using GRIs to find problems. The 

cepstral features are extracted with this method using different 

transforms like Discrete Sine Transforms (DST), Discrete 

Cosine Transforms (DCT), and DWT of the GRI. The ANN is 

used to match features. To identify flaws, Zahran et al. [4] 

used the spectral properties that they retrieved from the 

segmented GRIs' Power Density Spectra (PDSs). In [26], 

Higher-Order Spectra (HOS) are proposed for weld defect 

detection from GRIs. The authors used bi-spectrum and tri-

spectrum that were estimated by direct, indirect, and ARMA 

methods. Then, the detection process is implemented by ANN. 

The authors in [4, 26, 27] studied the effect of noise in their 

approaches. El-Tokhy et al. [1] presented multi-scale Wavelet-

Packets Transform (WPT) features extraction from GRI for 

defects detection. Additionally, the features are taken from the 

WPT faults signal's DCT and DST. Finally, feature matching 

can be achieved using SVM.  

In various industries, it is vital to automatically detect and 

classify the weld faults in GRIs. This study employs DL 

features, a feature selection technique, and an MKNN 

classifier to increase the detection and CA of faults in weld 

GRIs. Nine classes, including eight main defects and the 

normal one, are considered in the GRI dataset.  

The rest of the document is organized as follows: The 

proposed method and conventional classification techniques 

are introduced in Section 2. Section 3 presents the experiment 

findings and comments. The study is concluded in Section 4.  

II. THE PROPOSED APPROACH 

An automated detection and classification approach of 

defects in weld GRIs based on DL features is proposed. This 

approach used for 9-class classification contains normal and 8 

types of defects. Fig. 1 shows the samples of the 9 types of 

welding joints of GRIs. To assess the effectiveness of the 

suggested strategy, we compare its results with the 

classification ability of traditional methods, including 11 

different types of extracted features. The welding region is 

initially separated from the entire GRI, and all irrelevant 

information is eliminated. The extracted welding area is called 

the region of interest (ROI). Then, the traditional classification 

method and the proposed DL feature extraction approach are 

carried out, and their results are compared. 
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Fig. 1. Samples of the gamma radiography welding images. 

 

A. Traditional Classification Method  

Fig. 2 shows the flow diagram of the traditional method. 

After the ROI step, three steps are performed: preprocessing, 

feature extraction, and defects classification. For image 

enhancement, Histogram Equalization (HE), the Retinex 

algorithm, and bilateral filtering are employed. Several 

features are extracted and classified. 

Image preprocessing: The intensity of each GRI is 

standardized to produce the same range of grey levels for 

every image. The image enhancement stage is then carried out 

utilizing HE. An image processing technique called HE is 
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employed to boost contrast in the image. Every image that 

goes through the enhancement process has its contrast 

adjusted based on the pixels around it. After that, the Retinex 

algorithm was employed [28]. The image has been modified to 

have moderate brightness and strong contrast, and it can better 

retain the image's features. Subsequently, bilateral filtering—a 

non-linear, edge-preserving, and noise-reducing image 

smoothing filter—is used [29]. It replaces each pixel's 

intensity with a weighted average of the intensity values of 

adjacent pixels. The results of GRIs preprocessing steps were 

shown in Fig. 3. 

Features extraction: The first step before pattern 

classification is feature extraction. To make the decision-

making process for the categorization task simpler, it is mostly 

used to represent the raw data. Eleven different types of 

features that are used for classification are introduced in this 

section. In this step, the features are extracted from the 

processed weld GRI. First, features are extracted from 

transform domains like DST, DCT, DWT, and WPT. After 

that, features may be extracted from transforms of WPT as 

DCT (WPT), DST (WPT), and DWT (WPT). The PDS feature 

extraction is also applied. Other features are extracted from 

the HOS of weld GRIs, such as bi-spectrum (Bic) using the 

direct method (DM), indirect method (IDM), and ARMA, and 

tri-spectrum (Tris) using ARMA. Each extracted feature's 

ability is examined using the SVM or ANN classifier, and 

their accuracy is compared with the proposed DL approach. 

 

 

 

 

 

 

 

 

 

Fig. 2. The flow diagram of the traditional classification 

method of welding GRIs. 

 

B. The Deep Learning Feature Extraction Approach. 

An efficient method for automated weld defects 

classification in GRI based on fusion and selection of deep-

learned features is proposed. Five different DL models called 

SqueezeNet [30], GoogleNet [30, 31], ShuffleNet, DarkNet19, 

and MobileNet-V2 are used. SqueezeNet is a CNN that stands 

out because to its simple network design. Nevertheless, 

compared to AlexNet, it performs better and provides a 

smaller model size (less than 50×) [30, 32, 33]. Eight fire 

modules, three max pooling layers, two convolution layers, 

one output layer (Softmax), and one global average pooling 

layer make up SqueezeNet's sixty-eight layers.  

GoogleNet is a complex design because of the 

inception modules inside its structure. It has 22 layers and 

achieved a 5.7 percent error rate to win the ImageNet 

competition. It is widely regarded as one of the first CNN 

structures to avoid sequentially pooling layers and stacking 

convolutional layers [30, 31]. ShuffleNet, a CNN, outperforms 

several networks in speed and accuracy measures at the same 

computing circumstance [32]. It is made up of 172 layers in 

total, comprising a convolution layer, a max pooling layer, 

three stages with ShuffleNet units, one global average pooling, 

a fully connected layer, and a Softmax output. Darknet19 is a 

deep CNN with sixteen layers [34]. However, each layer is 

carefully designed to optimize the network's ability to detect 

objects in images. It primarily employs 3x3 filters and doubles 

the number of channels after each pooling phase. This 

approach, like Network in Network (NIN), employs global 

average pooling for prediction and 1x1 filters to reduce feature 

representation between 3x3 convolutions. This approach, 

similar to Network in Network (NIN), employs global average 

pooling for prediction and 1x1 filters to reduce feature 

representation between 3x3 convolutions. Batch normalization 

improves training stability, accelerates convergence, and 

ensures model batch consistency. MobileNet-v2 is a 53-layer 

CNN optimized for mobile devices [35]. It is based on an 

inverted residual structure, with residual connections emerging 

at bottleneck layers. The first fully convolution layer with 32 

filters makes up MobileNetV2's design. It is followed by 19 

residual bottleneck layers. 

After that, the extracted features from the 5CNN are fused, 

and the robust features are selected using the PCC, FS, or RF 

algorithm, which is fed to an MKNN classifier for automatic 

classification of weld GRI. The test statistic known as PCC is 

used to determine the statistical association or link between 

two continuous variables [36, 37]. It provides details on the 

direction of the relationship as well as the strength of the 

association, or correlation. In the end, the characteristics that 

had the highest separability and lowest correlation were 

chosen for categorization. FS is a straightforward feature 

selection filter technique that assesses how well two sets of 

real numbers can be discriminated from [38, 39]. A feature 

selection technique based on statistics is the F-score. It 

evaluates each feature separately to determine which 

characteristic is relevant. A higher F-score number indicates 

the most useful feature. RF algorithm One of the most 

effective feature filtering algorithms, RF was used for multi-

class situations [30, 40]. This algorithm can be used to 

successfully finish feature selection. The RF method is quite 

effective and places no limitations on the data type attributes. 

The RF algorithm aids in the solution of a variety of issues by 

selecting the most nearby samples from each sample in many 

categories. When y is a categorical variable with multiple 

classes, RF determines the predictor weights. The strategy 

encourages forecasters who assign different values to 

neighbors in separate classes while penalizing those who 

assign different values to neighbors in the same class [41]. The 

RF algorithm's formula is Eq. 1. 

𝑊𝑓
𝑖+1 = 𝑊𝑓

𝑖 + ∑
𝑃(𝑥)

1−𝑃(𝑐𝑙𝑎𝑠𝑠(𝑥))
∑ 𝑑𝑖𝑓𝑓(𝑥,𝑀𝑗(𝑥))𝑘

𝑗=1

𝑚∗𝑘
−𝐶≠𝑐𝑙𝑎𝑠𝑠(𝑥)

                    ∑ 𝑑𝑖𝑓𝑓𝑓(𝑥, 𝐻𝑗 , (𝑥))/(𝑚 ∗ 𝑘)𝑘
𝑗=1             (1) 

The difference in feature size between the two samples is 

represented by diff (). The neighbor samples of the sample x 
(1) 
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are represented by Hj(x). The neighbor samples from 

neighbors belonging to various classes are represented by 

Mj(x). The probability of class is given by p(x). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The results of GRIs preprocessing steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The proposed DL classification approach. 

Fig. 4 depicts the proposed DL approach's architecture. In 

the first stage, the prepared dataset's input images are scaled to 

fit the suggested network (255х255х3). The five pre-trained 

architectures were then utilized to extract features. Each CNN 

network generates 1000 features on its last fully connected 

layers from each input image. In the next stage, all 5000 

extracted features from the 5 CNN architectures were 

collected and sent to the PCC, FS, or RF algorithm for feature 

selection and compared to obtain the best one. 

The 500 RF features that had the best prediction accuracy 

were selected, and then they were split into 50 subfeatures. 

Finally, an MKNN classifier was used to evaluate its 

classification efficiency. Consequently, the RF algorithm 

decreased a total of 5000 features to 500 features. Based on 

the experiment findings and comparison with other published 

approaches, the 450-feature selection yielded the best 

classification performance. 

The five selected CNN architectures—SqueezeNet, 

GoogleNet, ShuffleNet, DarkNet19, and MobileNet-V2—

were chosen due to their lightweight design, architectural 

diversity, and proven performance in embedded and real-time 

applications. While deeper networks like ResNet50 and 

EfficientNet-b0 Feffwere also evaluated (see Table 4 and 

Table 6), the selected models offered a better trade-off 

between computational efficiency and feature diversity, which 

is crucial for feature fusion and selection in our proposed 

hybrid framework. 

III. EXPERIMENTAL SETUP 

A. Implementation 

In this section, the digitized radiographic dataset that was 

taken from [27] is augmented and used. It obtains 2026 

radiographic images and contains normal and eight types of 

weld defects for welded pipes, and they are obtained using 

gamma scanning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) ROI of the original Image 

(b) Normalization 

(c) Histogram equalization 

(d) Retinex algorithm 

(e) bilateral filtering 
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Fig. 1 shows samples of the weld GRIs dataset that was used 

in our experiments. Details of the radiography dataset images 

are depicted in Table 1. The table clearly shows that 80% of 

the image datasets are utilized as a training set, with the 

remaining 20% used as a testing set.  

The dataset exhibits class imbalance, with some defect 

types (e.g., burn-through) being underrepresented. To mitigate 

this, the ReliefF algorithm was chosen for its robustness in 

multi-class scenarios, as it assigns weights based on the ability 

of features to distinguish between neighboring samples of 

different classes. Additionally, the MKNN classifier, which 

considers multiple neighbors during classification, helps 

reduce the bias toward majority classes. No oversampling or 

synthetic data generation was applied to preserve the integrity 

of the original dataset. 

 

TABLE 1 

THE DETAILS OF THE RADIOGRAPHY IMAGES 

DATASET 

 

No Class name 

Number of images 

T
o

ta
l 

T
ra

in
in

g
 

T
es

ti
n

g
 

1 Burn through 64 51 13 

2 Cavity 264 211 53 

3 Cracks 207 166 41 

4 Inclusion 221 177 44 

5 Lack of penetration 257 206 51 

6 Normal 325 260 65 

7 Porosities 388 311 77 

8 Undercut 133 105 28 

9 Wormhole 167 134 33 

Total All 9 classes 2026 1621 405 

 

Three experiments were carried out on GRIs to assess the 

efficacy of the suggested method. Binary classification is the 

first experiment; the GRIs database is classified into normal 

and abnormal images using our proposed method to compare 

its result with state-of-art. In this case, 325 normal images and 

1701 defective images are used in our experiment, including 

porosities, lack of penetration, cracks, inclusion, undercut, 

cavity, wormhole, and burn-throughs. MKNN classifier has 

been built to examine the extracted features from the proposed 

approach. 

 The second experiment is the detection of abnormal 

radiographic images. The traditional and DL approaches are 

applied to the weld GRIs database to be examined and 

compared. In this case, all detection and classification 

methods are used to discriminate between 9 classes. Several 

features are extracted from the radiographic database, 

including traditional methods (PDS, DCT, DST, DWT, WPT, 

LBP, DCT (WPT), DST (WPT), DWT (WPT), Bis (IDM), Bis 

(ARAMA), and Tris (ARAMA)) and the five DL models 

(SqueezeNet, GoogleNet, ShuffleNet, DarkNet19, and 

MobileNet-V2). Each extracted feature of the five DL models 

has been used to train and test MKNN classifiers with 80% 

training and 20% testing of all datasets. The training dataset is 

constructed from 1621 radiographic images of the database 

containing all weld types, i.e., normal and flaw images, as 

cleared in Table 1. The remaining database constructs the 

testing dataset (405 radiographic images). 

 In the third experiment, the extracted features from 5 CNN 

networks are fused. Then, the PCC, FS, and RF algorithms are 

examined and compared to obtain robust features. The 

selected features are sent into the classification process using 

MKNN. The proposed method was used to analyze 5000 

features from DL models in total. These features were split 

into 50 sub-features with the highest prediction accuracy. The 

MKNN classifier was given inputs of 50, 100, 150, and 500 

features, respectively. 

B. Evaluation Metrics 

The Confusion Matrix (CM) and Receiver Operation 

Characteristics (ROC) curves are used to demonstrate the 

suggested model's performance. Other measures also used to 

evaluate the performance of CNNs and proposed networks 

include sensitivity, specificity, precision, DSC, and accuracy. 

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                          (2) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                   (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (4) 

𝐷𝑆𝐶 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   (5) 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
 (6) 

 Where TN and TP, respectively, represent the total number 

of true negatives and positives. The total number of false 

negatives and false positives, respectively, equals FN and FP. 

IV. Results and discussion 

Table 2 shows the results of our first experiment. The 

suggested method and other published methods are compared 

with the CAs on normal and abnormal radiography pictures in 

the table. The highest CA of 100% is achieved using the 

proposed detection approach. The results of the second 

experiment are illustrated in Tables 2 and 3. In the tables, a 

comparison study between traditional methods, DL models, 5 

CNN with feature selection algorithms, and the proposed. The 

obtained CA of the nine classes of GRI are listed for each 

method. The highest classification accuracy is achieved using 

the proposed approach. Figure 5 illustrates the success of the 

feature selection techniques. A comparison study between 

PCC, FS, RF, and no feature selection with the 5 CNN is clear 

in Table 3 and Fig. 5 at different training ratios of 70%, 80%, 

and 90%. 
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TABLE 2  

COMPARISON OF CLASSIFICATION ACCURACIES 

RADIOGRAPHIC IMAGES 

 

 Method 
Binary 

CA % 

9 

class 

CA% 

[1] 

WPT+SVM 99.21 69.5 

DST(WPT)+SVM 99.22 76.27 

DCT(WPT)+SVM 99.5 79.66 

DWT(WPT)+SVM 99.5 84.75 

[4] PDS+ANN 99.5 74.57 

[27] 

DWT+ANN 95 77.97 

DCT+ANN 97 81.36 

DST+ANN 99 79.66 

[26] 

Bis (ARMA) + ANN 99.5 81.36 

Bis (IDM) + ANN 94 72.88 

Tris (ARMA) + ANN 99.22 71.2 

The 

proposed 
5CNN+ReliefF+MKNN 100 99.75 

 

TABLE 3  

COMPARISON OF THE HYBRID 5CNN CA WITH 

VARIOUS FEATURE SELECTION TECHNIQUES AND 

THE CA OF THE INDIVIDUAL CNN MODELS  

Pretrained CNN 

model 

Training ratio 

60% 70% 80% 90% 

SqueezeNet 95.31 95.55 95.80 96.04 

GoogleNet 95.56 95.72 95.80 96.04 

ShuffleNet 96.18 96.38 96.54 97.03 

DarkNet19 94.94 95.93 96.05 97.52 

MobileNet-v2 96.92 97.36 97.78 98.02 

5 CNN 97.04 97.53 97.86 98.02 

5 CNN + PCC 97.87 98.52 98.77 99.01 

5 CNN + FS 98.15 99.01 99.26 99.5 

5 CNN + RF 98.64 99.34 99.75 99.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison of the CA of hybrid 5 CNN with and 

without feature selection algorithms. 

 

A comparison study between traditional and proposed 

methods is illustrated in Table 4 at an 80% training ratio. In 

the table, the obtained CA of the nine classes of GRI are listed 

for each method. The effects of several chosen features by 

PCC, FS, and RF feature selection algorithms on the CA are 

made clear in Table 5 and Fig. 6. It is obvious that 500 

features attain higher CA for all feature selection algorithms. 

As can be shown in Fig. 6, the performance rate rose from 50 

to 500 feature sets. Consequently, the combined DL and RF 

feature selection method performed best with only 450 

features, as opposed to the reduced 5000 features. 

Specificity, precision, DSC, and accuracy are the main 

metrics used to judge how effective the suggested approach is. 

Table 6 displays the typical results of the suggested model and 

other DL models. The performance of the proposed model 

outperforms not only the traditional methods but also the DL 

models. The Confusion Matrices (CMs) and the ROCs of the 

proposed models are depicted in Fig. 7 and Fig. 8, 

respectively. The 405 GRI are tested, all classes are correctly 

classified except one class, and only one image of inclusion 

images is misclassified into cavity by adding RF to our 

approach. 

 

 
 

Fig. 6. Accuracy of the hybrid DL models with different sub-

feature sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The proposed model confusion matrix. 
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TABLE 4  

CLASSIFICATION ACCURACIES (%) OF 9 CLASSES OF RADIOGRAPHIC DATABASE 

Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 

WPT [1] 58.62 41.4 51.72 48.3 50 41.4 82.8 91.4 87.93 

DPS [4] 96.55 82.76 79.3 91.4 79.3 87.93 82.76 84.5 94.83 

DST [27] 87.93 87.93 91.38 93.1 89.93 87.93 91.38 93.1 96.55 

Bispc [26] 93.1 79.31 79.31 91.4 91.4 79.31 86.21 84.48 89.65 

EfficientNet_b0 99.75 99.01 97.31 98.52 97.53 99.5 98.02 99 99.25 

ResNet50 100 99.25 98.27 99.5 99.75 100 98.76 100 100 

SqueezeNet 100 97.78 99.26 98.52 98.02 100 98.27 99.75 100 

GoogleNet 100 98.77 99.01 97.78 98.02 100 98.52 100 99.51 

ShuffleNet 100 98.52 99.26 97.78 99.26 100 98.77 100 99.51 

DarkNet19 100 98.52 99.01 98.77 98.27 100 98.77 99.51 99.26 

MobileNet-v2 100 98.52 99.01 98.77 98.27 100 98.77 99.51 99.26 

5 CNN + PCC 100 99.51 99.51 99.51 99.26 100 100 99.75 100 

5 CNN + FS 100 100 99.51 99.51 99.75 100 99.75 100 100 

The Proposed 100 99.75 100 100 99.75 100 100 100 100 

 

TABLE 5  

THE CA OF HYBRID DL MODELS WITH DIFFERENT FEATURES SUBSETS 

Number of features 
Accuracy 

5 CNN + PCC 5 CNN + FS 5 CNN + RF 

50 88.89 90.12 91.35 

100 90.12 91.35 94.57 

150 93.82 95.06 96.79 

200 95.55 95.55 97.28 

250 95.55 97.53 98.77 

300 97.04 98.27 98.77 

350 97.04 98.27 99.26 

400 98.02 98.52 99.51 

450 98.52 99.01 99.75 

500 98.77 99.26 99.75 

 

TABLE 6  

A COMPARISON OF THE SUGGESTED MODEL'S AVERAGE PERFORMANCE WITH ALTERNATIVE MODELS. 

Method Sensitivity Precision Specificity  DSC Accuracy 

EfficientNet_b0 94.3 93.56 99.1 93.84 94.07 

ResNet50 97.63 98.48 99.24 97.95 97.78 

SqueezeNet 99.46 96.34 96.34 96.31 95.80 

GoogleNet 99.47 96.10 96.44 96.21 95.80 

ShuffleNet 99.56 96.98 96.70 96.82 96.54 

DarkNet19 99.5 96.16 96.25 96.16 96.05 

MobileNet-v2 99.5 96.16 96.25 96.16 97.78 

5 CNN + PCC 99.85 98.64 98.87 98.73 98.77 

5 CNN + FS 99.9 99.38 99.24 99.29 99.26 

The Proposed 99.97 99.79 99.75 99.77 99.75 
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The ROC curves in Fig. 8 demonstrate that our method 

produces the best classifier performance. For the model 

without the RF, a lower performance was attained. Results 

show that our model performed better than other models. Only 

when our model is applied do we achieve the best CA of 

98.3%. For the DL model without the RF algorithm, a lower 

performance was attained. Results show that our model 

performed better than other models. The lower CA is attained 

in the absence of the RF. Only when our model is applied do 

we achieve the best CA of 99.75%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The ROC curve of our model. 

 

Ablation analysis: We perform ablation experiments to 

evaluate the effectiveness of the key parameters (RF and CNN 

networks) in the proposed model. Table 7 presents the results 

in numerical form. Each ablation study only removes the 

examined component from the proposed system while keeping 

the others. We examine the effects of removing each of the 

five CNN networks. Four CNNs are used in each ablation 

session, and 450 features are selected by the RF algorithm and 

sent to MKNN for classification. As seen in Table 7, the CA is 

lower compared to the proposed network without (W/O) 

SqueezeNet, GoogleNet, ShuffleNet, DarkNet19, or 

MobileNet-V2. The largest reduction occurred when 

MobileNet-V2 was not used. Additionally, the impact of the 

RF feature selection model is investigated. The MKNN 

classifier in this study receives all 5000 extracted features 

from the five CNNs and uses them to carry out the 

classification process. The worst CA is attained in the absence 

of the RF, as the table illustrates. Using the proposed model is 

the only way to achieve the best CA. 

V. CONCLUSION  

This paper presents a hybrid DL model used for improving 

the CA of weld defects of GRIs with the fewest possible 

features. SqueezeNet, GoogleNet, ShuffleNet, DarkNet19, and 

MobileNet-V2 DL models, five of the most common CNN 

architectures, contributed weighted DL features to this model. 

All features of the five CNN models are collected and fused. 

Selecting reliable, highly ranked features is done using the RF 

algorithm. Out of the 5000 features, 450 robust features are 

selected that affect classification performance. The features 

with the highest weight—50, 100, 150, ..., 450—were 

classified using MKNN. For training ratios of 60%, 70%, and 

80%, the efficient suggested hybrid technique achieved 

98.64%, 99.34%, and 99.75% CA. When compared to 

traditional approaches, independent CNN models, and other 

studies in literature, the proposed hybrid approach provides 

the best performance for weld defects classification. The 

ablation study highlights the importance of our model's 

essential elements. 

 

TABLE 7  

ABLATION ANALYSIS OF IMPORTANT COMPONENTS 

IN OUR TECHNIQUE AT DIFFERENT TRAINING 

RATIO. 

W/O 
Accuracy at different training ratio 

60% 70% 80% 90% 

SqueezeNet 98.03 98.35 98.52 99.01 

GoogleNet 97.78 98.18 98.27 99.01 

ShuffleNet 97.65 98.02 98.27 98.51 

DarkNet19 97.53 97.86 98.19 98.51 

MobileNet-

v2 
97.29 97.86 98.02 98.51 

RF 97.04 97.53 97.86 98.02 
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