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 Abstract— Breast cancer is the second most prevalent cancer 

globally and remains one of the leading causes of cancer-related 

mortality. Over the past few decades, the incidence of breast cancer 

has increased significantly, highlighting the critical need for early 

detection to improve survival rates. In response, researchers have 

been actively developing computer-aided diagnostic systems to assist 

in rapid and accurate diagnosis. Various datasets have been utilized 

in these efforts, leveraging the power of Artificial Intelligence (AI) to 

support radiologists in medical image analysis, ultimately enhancing 

patient diagnosis and treatment. Among the available diagnostic 

techniques, histopathology imaging remains the gold standard for 

detecting breast cancer with high accuracy. In this study, we 

employed ResNet- based architectures to implement a Mask Region-

based Convolutional Neural Network (Mask R-CNN) for the 

automated detection of nuclei in histopathological breast cancer 

images. Following detection, the system classifies the cancer type, 

extracting multi-scale features using a combination of Feature 

Pyramid Networks (FPN) modules. To further enhance recognition 

accuracy, we utilized Region of Interest Align(RoIAlign), ensuring 

precise feature extraction. Experimental results demonstrate that our 

proposed approach not only delivers superior visual interpretability 

but also outperforms existing models in key performance metrics, 

achieving 97.7% accuracy, 97% recall, and a 96.7% F1 score. 

Keywords—FPN , MaskRCNN , Nuclei Segmentation,  ResNet. 

I. INTRODUCTION 

reast cancer is the most common cancer among 

women. After lung cancer, breast cancer is the second 

deadliest cancer according to World 

Health Organization (WHO)[1]. The International Agency 

for Research on Cancer (IARC) provides key insights into the 

global cancer burden. Here are some highlights from their 

2022 estimates: New Cases: Around 20 million new cases of 

cancer were reported. Deaths: Approximately 9.7 million 

people died from cancer. Survivors: About 53.5 million people 
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were alive five years after their diagnosis. Mortality Rates: 

One in nine men and one in twelve women die from cancer. 

The IARC's Global Cancer Observatory also offers insights 

into specific cancer types for 2022. They record 12.4% new 

cases for Lung Cancer which is approximately 2.5 .11.6% new 

female cases for  Breast Cancer which is about 2.3 million 

.9.6% new cases for Colorectal Cancer which is about 1.9 

million. 7.3% new cases for Prostate Cancer that is about 1.5 

million. 4.9% new cases for Stomach Cancer which is 970,000 

as shown in figure (1) [1]. Significant progress has been made 

in cancer treatment. Invasive ductal carcinoma (IDC) may not 

cause symptoms initially. Often, a mammogram detects 

abnormalities, prompting further tests. Typically, the first sign 

of IDC is a lump or mass in the breast, which can be felt by 

the patient or doctor. 

 
Fig. 1 Who Statistics[1] 

 The American Cancer Society states that changes in the 

breast can be signal cancer. Signs of breast cancer may 

include: 1- Breast swelling. 2- Skin irritation or dimpling. 3- 

Breast pain. 4- Nipple pain or inward turning of the nipple. 5- 

Redness, scaling, or thickening of the nipple or breast skin. 6- 

Non-milk nipple discharge. 7- Axillary lumps [37]. These 

signs and symptoms warrant further evaluation for possible 

breast cancer. The previous analysis was traditional and 

performed by pathologists. However, recent advancements 

have changed this approach. The new direction is focused on 

using automatic techniques. These techniques are now used to 

analyze images. [3]. Mammography is another method used 

for breast cancer diagnosis. It helps in the detection of the 

presence of tumor tissues. But this traditional method can’t 

detect if these tissues are benign or malignant. So, the most 

accurate detection method is by taking a biopsy from this 

mass. Then examine these images under the microscope. 

These microscopic images are recognized as Histopathology 

images. There are four categories of breast tissues in 

histopathology images. The first category is Normal tissue, 
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which is defined as having no tumors. If the tissue has non-

cancerous tumors, then it’s considered as benign tissue which 

is the second category. Cancerous tumors can be classified as 

the other two categories either in-situ or invasive. The cancer 

which is not extended beyond the breast lobular system yet is 

considered as In-Situ cancer. But when the cancer has invaded 

the breast, it's considered as Invasive cancer shown in fig. (2). 

 
Fig. 2 H&E Histological Images for breast cancer 

(A) Benign (B) Normal (C) In-Situ (D) Invasive 

Hematoxylin-eosin (H&E) staining has long been rated as 

the best measure for the histological examination of human 

tissue. Machine learning (ML) and deep learning (DL) are 

important fields of investigation for biomedical and 

bioinformatics researchers. These fields are vital for 

classifying cancer patients as high risk or low risk. Accurate 

classification helps guide the right treatment. Early detection 

of cancer cells is crucial for this process. Timely identification 

allows for appropriate and effective treatment. Timely 

identification allows for appropriate and effective treatment. 

To simulate the advancing in cancer prognosis and treatment, 

these methods (ML & DL) have been used. CNN has shown 

great promise in cancer detection and diagnosis in recent 

studies [4, 5]. Computerized cancer diagnosis from 

histopathology images had many applied studies. Many times, 

traditional methods work well. DL does, however, have the 

benefit of displaying results as though they were human. Deep 

learning has been used by numerous models to address the 

segmentation, localization, and classification issues in 

computer vision [7–12].  In recent years, Graphics Processing 

Units (GPUs) have revolutionized deep learning, making it 

faster and more efficient. Unlike traditional Central Processing 

Units (CPUs), which process tasks step by step, GPUs handle 

multiple operations at once through parallel computing. This 

capability significantly accelerates training and inference, 

making GPUs essential for demanding tasks like image 

recognition, object detection, and speech processing [6]. With 

GPU acceleration, deep learning models can quickly analyze 

large datasets, reduce training times, and improve overall 

performance. In this study, GPUs are key to managing 

complex computations, ensuring high-accuracy predictions 

and seamless real-time processing. Researchers have 

extensively studied computerized cancer diagnosis using 

histopathology image analysis. While traditional techniques 

remain effective in many cases, deep learning methods offer a 

significant advantage by achieving performance levels 

comparable to human experts. Various deep learning models 

have successfully addressed segmentation, localization, and 

classification challenges in computer vision [7-12]. For this 

study, we selected the Mask Regional Convolutional Neural 

Network (Mask R-CNN) due to its simplicity, flexibility, and 

generalizability compared to other architectures. An expansion 

of Faster R-CNN, Mask R-CNN was created especially to 

solve segmentation problems in computer vision [13]. 

Interestingly, it did better than any single-model submission in 

the COCO challenge [13]. Mask R-CNN leverages the 

regional proposals generated by the Region Proposal Network 

(RPN) and applies an advanced Region of Interest (ROI) 

aggregation operation to produce uniform output sizes after 

feature extraction. Unlike Faster R-CNN, which employs ROI 

pooling, Mask R-CNN replaces it with ROI-align, ensuring 

more precise segmentation masks for enhanced instance 

segmentation. Additionally, the model integrates a 

Convolutional Neural Network (CNN) as the network head in 

its architecture. This study proposes a model to address data 

sparsity in histopathological breast cancer classification by 

combining multiple high-resolution image patches 

(2048×1536 pixels) from whole-slide images. A deep CNN is 

incorporated into the network classification process to extract 

features efficiently, improving the accuracy of breast cancer 

diagnosis. We decided to use Mask Regional Convolutional 

Neural Network (Mask RCNN) design due to its simplicity 

and flexibility. It also provides a general framework compared 

to other architectures, each with its own advantages. The Mask 

RCNN is an extended framework of Faster-RCNN. It solves 

the segmentation issue in computer vision [13]. In the COCO 

challenge, it outperformed all single model entries [13]. This 

model takes advantage of the regional Proposal generated by 

the Regional Proposal Network (RPN). After feature 

extraction, and Region of Interest (ROI) aggregation operation 

is used to generate output with the same size. In the Faster 

RCNN, ROI pooling has been replaced with ROI-align. This 

change ensures more accurate segmentation masks for better 

instance segmentation. Mask-RCNN also has basically CNN 

which is considered as the network head in the procedure. This 

research paper proposed a model to solve the data sparsity 

problem in histological image for breast cancer classification 

process using combination of several further patches 

(2048x1536 pixels) from the full Slide available images. Deep 

CNN is used in network classification to extract features 

efficiently. This is how the document is structured. Section 2 

discusses some related studies. Section 3 will then discuss the 

dataset and its contents, the technologies used, and the 

proposed model. Section 4 results of our model and 

conclusions. Part 5 future work research, and medical 

imaging, ultimately improving healthcare outcomes and 

advancing precision medicine. 

A. Abbreviations and Acronyms 

ML: Machine learning 

DL : Deep Learning 

Hematoxylin-eosin :(H&E) 

RPN: Region Proposal Network 

CNN: Convolutional Neural Network 

GPUs: Graphics Processing Units 

CPUs: Central Processing Units 

ROI: Region of Interest 
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B. Algorithms 

Algorithm 1: MaskRCNN algorithm 

Input: Histological images from the BACH dataset 

Output: Refined Region of Interest (ROI) proposals 

1. # Step 1: Load and Preprocess Images 

2. function LoadAndPreprocess(img): 

3. img_resized = Resize(img, (H, W)) 

4. img_normalized = Normalize(img_resized) 

5. return img_normalized 

6. # Step 2: Generate Anchors and Adjust for Ground Truth Objects 

7. function GenerateAnchors(feature_map, scales, aspect_ratios): 

8. anchors = [] 

9. for each scale in scales: 

10 for each ratio in aspect_ratios: 

11. anchor = ComputeAnchor(scale, ratio) 

12. AdjustAnchor(anchor, ground_truth_boxes) 

13. anchors.append(anchor) 

14. return anchors 

15. # Step 3: Region Proposal Network (RPN) Activation 

16. function RPN(feature_map, anchors): 

17. proposals = [] 

18. for each anchor in anchors: 

19. score, bbox = RPN_ForwardPass(feature_map, anchor) 

20. if score > threshold: 

21. proposals.append((score, bbox)) 

22. return proposals 

23. # Step 4: Plot ROI Slices for Visualization 

24. function PlotROIs(img, proposals): 

25. for each proposal in proposals: 

26. DrawBoundingBox(img, proposal) 

27. # Step 5: Apply Non-Maximum Suppression (NMS) 

28. function NMS(proposals, IoU_threshold): 

29. proposals_sorted = SortByScore(proposals) 

30. final_proposals = [] 

31. while proposals_sorted is not empty: 

32 best_proposal = proposals_sorted.pop(0) 

33. final_proposals.append(best_proposal) 

34. for each proposal in proposals_sorted: 

35.             IoU = ComputeIoU(best_proposal, proposal) 

36.             if IoU > IoU_threshold: 

37.                 proposals_sorted.remove(proposal) 

38. return final_proposals 

39. # Step 6: Process ROIs for Mask Prediction 

40. function MaskPrediction(final_proposals, feature_map): 

41. masks = [] 

42. for each proposal in final_proposals: 

43. mask = MaskHead(feature_map, proposal) 

44. masks.append(mask) 

45. return masks 

46. # Main Function to Run the Algorithm 

47. function MaskRCNNPipeline(img): 

49. preprocessed_img = LoadAndPreprocess(img) 

50. feature_map = ExtractFeatures(preprocessed_img, ResNet) 

51. anchors = GenerateAnchors(feature_map, scales, aspect_ratios) 

52. proposals = RPN(feature_map, anchors) 

53. PlotROIs(img, proposals) 

54. refined_proposals = NMS(proposals, IoU_threshold=0.5) 

55. masks = MaskPrediction(refined_proposals, feature_map) 

56. return masks 
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II. RELATED WORK 

Research in the early 2000s focused on models to detect 

abnormalities in mammograms. Traditional approaches often 

required significant tuning based on the dataset. They 

produced inconsistent results across different settings. When 

datasets or parameters changed, these models needed 

reconfiguration. Such limitations led researchers to explore 

more adaptive deep learning models for breast cancer 

segmentation and classification [15,16]. Malarvizhi, A. et al. 

suggested a Bayesian Interactive Adaboost CNN (B-IAB-

CNN) for classification and an Improved-Mask R-CNN (I-

MRCNN) for segmentation. While ROI-align addresses 

quantisation issues to improve feature extraction, I-MRCNN 

uses a Region Proposal Network (RPN) to improve object 

detection. B-IAB-CNN improves classification accuracy by 

combining CNN, Bayesian, and Adaboost techniques.  

The BACH dataset, which contains images of normal, 

benign, invasive carcinoma, and DCIS histology, was used to 

train the algorithm. 96.32% segmentation and 96% 

classification accuracy were attained by the model. [17]. 

Maurya et al. (2024) proposed FCCS-Net, a fully 

convolutional, attention-based transfer learning model that is 

designed for breast cancer classification. This model integrates 

a convolution-driven attention mechanism within a fine-tuned 

ResNet-18, which helps to highlight key cellular features with 

using residual connections to maintain learning stability. 

When tested on the BACH dataset, it demonstrated average 

classification accuracy of 91.25% and an AUC score of 98.5, 

precision (91.18), recall (91.38), and an F1-score of (91.28). 

[18]. Sreelekshmi et al. (2024) proposed a hybrid multi-class 

classification model that combines CNNs with the Swin 

Transformer to enhance breast cancer detection and 

classification. This model combines depth-wise separable 

convolution for taking localized features with the Swin 

Transformer’s ability to recognize global patterns. They 

enhanced the accuracy and robustness that were 97.8% 

classification accuracy, recall (96.8%), precision (97.1%), and 

an F1-score (97.1%) [19].  

A different approach is taken by Kutluer et al. (2019), who 

combines a unique feature selection method with different 

deep transfer learning models. Their suggested model obtained 

a classification accuracy of 92.17% after training on the 

BACH dataset. [20]. Su et al. (2022) concentrated on mass 

detection and segmentation. They developed a YOLO and 

LOGO Transformer-based model. The model trained on the 

CBIS-DDSM [38] and INBreast [39] datasets. Their approach 

achieved a 95.7% true positive rate, along with powerful 

segmentation performance [24]. Bagchi et al. (2022) proposed 

a deep learning-based classification model that uses a patch-

based strategy. Their approach used stain normalization and 

augmentation to separate high-resolution histopathological 

pictures into smaller patches before categorizing them into 

four groups.  A two-stage neural network was used to integrate 

these patch-level predictions into image-level classifications. 

On the ICIAR BACH, the model's accuracy was 98.6% for 

two-class classification and 97.50% for categorical 

classification [25]. The Deep Ensemble Graph Network 

(DEGN) was presented by Shwetha G. et al. (2024) for the 

analysis of breast cancer histology, and it performed 

flawlessly on the BCSS dataset. DEGN obtained 93% 

precision, 92% recall, 96% accuracy, and 93% F1-score in 

Multi-Magnification (MM) mode. It achieved 92% F1-score, 

94% precision, 95% recall, and 94% accuracy in Sim 

(similarity measurement module) mode. [36].  

Baroni et al. (2024) proposed a model that used self-

attention Vision Transformer (ViT) model. To help in 

histopathology-based breast cancer classification. Their model 

use ImageNet pretraining, data augmentation, color 

normalization, and optimized patch configurations to boost 

accuracy. Trained on the BACH dataset, the ViT model was 

later tested on BRACS and AIDPATH to evaluate its 

generalizability. It achieved classification accuracies of 0.91 

on BACH, 0.74 on BRACS, and 0.92 on AIDPATH [35]. 

Wahab et al. (2019) applied transfer learning and hybrid 

CNNs to identify mitotic nuclei in histopathology images. 

Their approach achieved an F-measure of 71.3 [26].  Sunardi 

et al. (2022) used two deep learning models (CNN and faster 

RCNN) on mammograph images (MIAS) [40]. They worked 

to detect the mass in the breast. They found that CNN is 

applied for mass classification, while Faster R-CNN focuses 

on mass localization and classification [34]. Rashmi et al. 

(2023): proposed model for breast nuclei unsupervised 

segmentation using Applied a multi-channel Chan-Vese. Their 

approach utilized color segmentation to enhance accuracy, 

achieving an Intersection over Union (IoU) score of 0.76 and 

an accuracy of 82% [27].  

Samudra et al  (2024) presents a novel hybrid approach for 

semantic segmentation in breast cancer imaging, utilizing a 

DenseNet-121 backbone integrated with an enhanced Pyramid 

Scene Parsing Network (PSPNet) and Attention Gate 

mechanisms. This model addresses challenges in tumor 

detection accuracy, computational efficiency, and noise 

reduction. The preprocessing phase employs Adaptive Local 

Gamma Correction (ALGC) to enhance image contrast, while 

the Attention Gate highlights critical features, suppressing 

irrelevant data.  Additionally, a Pyramid Dilated Convolution 

Module (PDM) is introduced to capture global contextual 

information. The model achieves a significant improvement in 

predictive accuracy (94.68%) over traditional segmentation 

models, making it a promising tool for clinical applications in 

early tumor detection. [33]. All this related work is shown 

below in table 1. 
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Table 1: Related work comparison 

Ref Year Used Dataset Used Algorithms Calculated Metrics 

[17]  2022 BACH 
Improved-Mask R-CNN (I-MRCNN) for 
segmentation and a Bayesian Interactive 
Adaboost CNN (B-IAB-CNN) for classification 

ACC =96.32% 
Precision=95 
Recall=95.01 
F-score=95.69 

 [18] 2024 BACH 
fully convolutional attention-based transfer 
learning framework 

ACC=91.25 
recall =91.38 
precision =91.18 
F-score=91.28 

 [19]  2024 BACH combining CNN and Swin Transformer 

ACC=97.8 
Recall=96.8 
Precision=97.1 
f-score=97.1 

 [20]  2023 BACH Their model forms of recurrent and convolutional 
deep network 

ACC=92.17 
recall =92.2 
precision =92.4 
F-score=92.15 

 [21] 2020  ICIAR 2018 Breast Cancer 
Dataset (IBCD) 

convolutional neural network (CNN) trained with 
a new strategy called reversed active learning ACC= 89.16% to 92.81% 

 [22] 2022 
Used two data sets BCDR-01 and 
CBIS-DDSM Mammography 
dataset 

 Residual U-Net model and use 2 -ResNet for 
classification 

Mean ACC=0.98 
Mean IOU=0.94 
F-Score=0.98 

 [23] 2022 DDSM Mammography dataset Yolo algorithm ACC = 97.50% 
F-score=95.23% 

 [24] 2020 
Used tow data sets (CBIS-DDSM 
and 
INBreast) 

Yolo algorithm 
ACC=95.7% IoU=64.0% 
F1-score=74.5% 
precision= 65.0% 

 [25] 2022 BACH dataset 
two-stage neural network for patch-based 
classification 

ACC= 97.50% 
Precision=98.25 
Recall= 97.75 
f-score= 97.75 

 [26] 2021 MITOS12 dataset  (CNN) for segmentation, followed by Hybrid-CNN 
(with Weights Transfer) 

Precision=0.506 
Recall=0.804 
f-score=0. 713 

[34] 2022 Mammograph dataset( (MIAS) two model CNN and RCNN ACC for CNN = 91.66% 
ACC for RCNN = 63.89% 

[27] 2023 
They used two datasets. 
Kasturba Medical College (KMC) 
dataset and BreakHis dataset 

Multi-channel Chan-Vese model ACC= 82.0% 
IoU= 0.76 

[33]   2024 whole-slide images (WSIs) 
combines DenseNet-121 as the backbone for 
feature extraction with a Pyramid Scene Parsing 
Network (PSPNet) 

ACC=94.98% 
 Precision: 94.38% 
 Recall: 94.73% 
 F1 Score: 94.38% 

[35] 2024 Bach data set self-attention Vision Transformer (ViT) 

Acc=91% 
precision= 86% 
Recall=80% 
F-Score=85% 

[36] 2024 
BCSS2021 Dataset 
BACH dataset 

 
Deep Ensemble Graph Network (DEGN) 

In MM mode:  
precision =093%  
recall =92% 
acc=96% 
F1-score -93%  
for SIM mode: 
precision =94%, 
 recall =95%  
acc = 94% 
F1-score=92% 
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III. MATERIAL AND METHOD  

A)  USED DATASET 

The 400 high-resolution H&E-stained photos of breast tissue 

in the BACH (Breast Cancer Histology dataset) dataset are 

evenly divided into four groups: benign, invasive, in situ 

cancer, and normal. Each image is 2048 × 1536 pixels in size. 

This dataset, which was developed for the ICIAR 2018 Grand 

Challenge, supports research on breast cancer segmentation 

and classification. Expertly labeled by pathologists, it serves 

as a valuable resource for training machine learning models in 

automated breast cancer detection, supporting tasks such as 

classification and semantic segmentation. It’s divided to 80% 

training and 20% validation. It also has separate test dataset 

contain 100 images also [29]. As shown in table 2. 

Table 2 Description of dataset 

B)  METHODOLOGY 

The input images are fed into ResNet-50 and ResNet-101, 

convolutional networks, which serve as backbone for feature 

extraction to assess accuracy. 

Primarily, these networks identify basic characteristics like 

edges. By integrating the FPN, high-level features are further 

retrieved. It aids in the creation of the feature map through the 

use of ResNet and FPN. PN modules were created to improve 

multi-scale feature extraction, especially for the analysis of 

histopathology images. 

 

The proposed model allows to merge low-level fine details 

with higher-level contextual information to improve overall 

feature representation. This model is especially useful for 

precisely detecting cancerous points in histopathological 

images. The full design of Mask R-CNN is shown in Figure 3. 

 

Our proposed model uses ResNet-50 and ResNet-101 as 

backbone convolutional neural networks (CNNs) to extract 

distinguished features from histopathological images to enable 

accurate detection and segmentation of cancerous regions. 

 

  
 

Fig 3  Mask RCNN structure 

 

Firstly, these CNNs detect fundamental structures such as 

edges and textures, while deeper layers powered by the 

Feature Pyramid Network (FPN) select more complicated 

patterns. The FPN enhance multi-scale feature extraction by 

integrating fine-grained details from lower layers with high-

level semantic information, improving the model’s ability to 

identify complex histological structures with greater accuracy. 

We apply some preprocessing steps before feeding these 

images into the CNNs such as normalization (using the COCO 

dataset’s mean and standard deviation), resizing with 

preserving aspect ratios, and data augmentation techniques 

like flipping, rotation, scaling, and hue/saturation adjustments. 

These techniques help differentiate the dataset, minimize the 

risk of overfitting and improving the model’s ability to 

generalize. However, the in-situ carcinoma class posed 

challenges in augmentation since its structural inconstancy 

reduced the effect of transformations like elastic deformations 

and zooming. The dataset after augmentation is shown in table 

3 and augmented version is sown in figure 4. After 

preprocessing, images pass through ResNet-50 and ResNet-

101 for feature extraction within the Mask R-CNN framework. 

 

 

 
 

Fig 4 augmented images 
 

 
 

 

 

Class name 

 

Total no. 

of images 

Training 

images 

Validation 

images 

Normal 100 80 20 

Benign 100 80 20 

In Situ 

Carcinoma 
100 80 20 

Invasive 

Carcinoma 
100 80 20 

Testing 

dataset 
100 
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Table 3 augmented dataset 

 

 

The extracted features are then processed by the Region 

Proposal Network (RPN), which scans for potential cancerous 

regions by proposing bounding boxes based on objects scores. 

To refine these proposals, the model calculates the Intersection 

over Union (IoU) between anchor boxes and ground truth 

objects, ensuring precise region selection. 

A crucial component of this process is ROI-Align, which 

fine-tunes the selected regions by preserving spatial precision 

through bilinear interpolation. Prior to submitting the features 

to fully connected and convolutional layers for classification 

and segmentation, this phase guarantees consistency in feature 

representation. The segmentation process applies binary masks 

to the detected regions, providing detailed outlines of 

cancerous areas. Meanwhile, the classification module, 

powered by SoftMax regression, categorizes the regions into 

Normal, Benign, In Situ Carcinoma, or Invasive Carcinoma 

based on learned patterns. As shown in figure 5. 

 

 

  
 

Fig 5 model flow chart 

 

The entire process, from image preprocessing to 

classification.  

The integration of ResNet-50 and ResNet-101 as backbone 

architectures within the Mask R-CNN framework significantly 

enhances feature extraction, particularly when combined with 

the Feature Pyramid Network (FPN). This setup improves the 

detection and segmentation of intricate structures in 

histopathological images. Leveraging transfer learning also 

reduced training time and computational demands while 

maintaining high accuracy, underscoring the effectiveness of 

these architectures in medical imaging applications. 

The Feature Pyramid Network (FPN) creates a hierarchical 

feature representation using a top-down pathway with lateral 

connections. This allows both high-resolution and low-

resolution features to contribute to detecting objects of various 

sizes. At the same time, the Region Proposal Network (RPN) 

operates on these enhanced feature maps, scanning them to 

generate region proposals by predicting bounding boxes and 

assigning abjectness scores. 

By leveraging FPN’s multi-scale features, RPN improves 

proposal accuracy, particularly for smaller objects. Instead of 

working separately, FPN and RPN function together—FPN 

enhances feature extraction, while RPN uses these refined 

features to generate more precise region proposals, 

strengthening the overall object detection framework. 

For training, the Adam optimizer was used with a learning 

rate of 0.001 and a composite loss function that included 

classification loss, bounding box regression loss, and mask 

prediction loss. Both ResNet-50 and ResNet-101 are tuned to 

be more closely aligned with the pre-trained weights to the 

histological dataset. Training was performed through 50 

epochs with mini batches, ensuring stable learning. Fine-

tuning pre-trained weights helped reduce computational costs 

while improving detection accuracy. The dataset was split into 

80% for training and 20% for validation, with early stopping 

applied to forbid overfitting. 

Metrics like accuracy (ACC), precision (P), recall (R), and 

F1-score were computed in order to assess the model's 

performance. While qualitative evaluations involved 

superimposing bounding boxes and anticipated masks onto 

input pictures to confirm segmentation accuracy, confusion 

matrices offered more in-depth insights into classification 

errors.  Particularly for small and intricate structures in 

histopathological pictures, object detection was much 

enhanced by combining ResNet-50 and ResNet-101 with FPN. 

By merging, FPN and RPN create a dominant detection 

system. FPN refines feature extraction, while RPN generates 

accurate region proposals, ultimately enhancing the overall 

detection framework. 

For implementation, we use Anaconda and Jupyter 

Notebook, by using PyTorch as the core deep-learning 

framework. The experiments were perfomed on a MacBook 

Air (2020) with an Apple M1 chip, using its integrated GPU 

for efficient computation.  

 

IV. RESULTS AND DISCUSSION 

In this study, we used anchors to assist the RPN identify 

potential object locations in histopathology images. We 

implemented a binary classifier that assigns a score based on 

the likelihood of an object being present in each region to 

achieve this. The anchors, which have a high Intersection over 

Union (IoU) score, is called positive anchors and  passed on 

for further processing. The RPN targets were generated by 

computing anchor grids that covered the entire image at 

multiple scales. To evaluate the quality of these anchors, we 

compared their IoU values with ground truth objects. 

Specifically: 

Anchors with IoU > 0.7 were labeled positive, meaning they 

had a strong overlap with actual objects. 

Class name 
Total no. 

of images 

Training 

images 

Validation 

images 

Normal 400 320 80 

Benign 400 320 80 

In Situ 

Carcinoma 
202 162 40 

Invasive 

Carcinoma 
400 320 80 
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Anchors with IoU < 0.3 were classified as negative and 

discarded. 

Anchors between these values were ignored to avoid adding 

noise to the training process. 

By filtering out irrelevant anchors, we ensured that only the 

most informative ones were used for training, improving the 

overall accuracy and effectiveness of the RPN. 

To further refine detection, we calculated necessary resizing 

and displacement adjustments for each anchor to fully cover 

the ground truth objects. Using the Keras framework, we 

activated the RPN and visualized region-of-interest (ROI) 

slices. Additionally, we applied Non-Maximum Suppression 

(NMS) to remove duplicate detections, streamlining the final 

output. As shown in algorithm 1. 

In the next step, we generated bounding box regression 

outputs and class probabilities using a classifier proposal. To 

enhance detection accuracy, we removed background regions 

around classified nuclei by applying a low-confidence 

threshold, ensuring that only relevant bounding boxes were 

kept. 

For backbone network analysis, we tested ResNet-50 and 

ResNet-101, evaluating their performance across all layers and 

heads. Our results showed a consistent decrease in loss with 

more iterations, with notable improvements after 50 iterations. 

This reinforced the effectiveness of our approach in detecting 

and classifying objects in histopathological images. 

The segmentation loss stabilized at this point, reflecting the 

probabilistic challenges inherent in cancer detection tasks. The 

results of our classification efforts are summarized in the 

confusion matrix presented in Figure 6. 

 
    

Fig. 6 confusion matrix for Resnet 50 

 

The model reached an accuracy of 97.7% during training 

and 96.5% on the validation set for ResNet 50, and 96.2% 

during training and 95.4% for ResNet 101, demonstrating its 

strong ability to generalize well to new data as shown in 

Figures 7 and 8. 

 
           

Fig. 7  Resnet 50 Accuracy curve. 

 

 
 

Fig. 8 Resnet 101 Accuracy curve. 
 

The loss function decreased, with the training loss dropping 

from 1.2 to 0.35, and the validation loss for Resnet 50 and 

dropping from 1.4 to 0.5 for Resnet1 01, indicating efficient 

learning with minimal overfitting as shown in figure 9 and 10. 

 

 
Fig 9   loss curve for resnet50 
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Fig 10   loss curve for resnet101 
 

For the ROC-AUC scores, all classes (Normal, In situ, 

Benign, Invasive) had values greater than 0.94, with Normal 

and Invasive achieving the highest AUCs of 0.98 and 0.97, 

respectively, confirming the model’s robust performance 

across all categories as shown in figure 11. 

 

 
 

Fig. 11    ROC-AUC curve 

 

These metrics provide a comprehensive evaluation of the 

model’s performance in classifying breast cancer instances. 

The RPN targets serve as critical training values, where 

Precision is defined as the proportion of True Positive (TP) 

samples relative to the total number of samples anticipated to 

be positive. There are two potential outcomes for positive 

predictions: accurately predicting a positive class (TP) or 

incorrectly classifying a negative instance as positive (False 

Positive, FP). This relationship can be mathematically 

expressed as: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall, on the other hand, is defined as a coverage metric 

that quantifies the number of true positive samples correctly 

identified among the actual positive instances. There are also 

two possible scenarios for recall: correctly predicting the 

original positive class (TP) or misclassifying a positive 

instance as negative (False Negative, FN). The calculation for  

Recall is given by: 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Through these evaluations, we demonstrate the robustness 

and reliability of our proposed model in accurately classifying 

breast cancer instances. The high accuracy and favorable 

performance metrics underscore the potential of our approach 

for clinical applications in histopathological diagnosis, thereby 

contributing to advancements in automated cancer detection 

methodologies. The first is to make a prediction for the 

original positive class as the positive class (TP). The second is 

to make a prediction for the original positive class as the 

negative class (NP) (FN). The F-measure is a comprehensive 

evaluation metric.  

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Apparent discrepancies between the precision and recall 

indices can be avoided. it can combine the results of precision 

and recall A high F-meter may indicate a more effective test 

method. Through these evaluations, we demonstrate the 

robustness and reliability of our proposed model in accurately 

classifying breast cancer instances. The high accuracy and 

favorable performance metrics underscore the potential of our 

approach for clinical applications in histopathological 

diagnosis, thereby contributing to advancements in automated 

cancer detection methodologies. The comparative analysis 

highlights the superiority of our model over other state-of-the-

art methods. As shown in table 4 and figure 12. 

our approach using ResNet 50 and ResNet 101 achieves 

higher accuracy, precision, recall, and F1 scores than other 

deep learning models, including self-attention Vision 

Transformers (ViTs) and Deep Ensemble Graph Networks 

(DEGN). The improvements are attributed to the efficient 

feature extraction capabilities of the ResNet backbone 

combined with the Feature Pyramid Network (FPN) for multi-

scale feature learning. Furthermore, the incorporation of Non-

Maximum Suppression and optimized anchor selection 

enhances detection performance, leading to reduced false 

positives and improved classification accuracy. 

 

Table 4. Comparison between our model and other mode 

Considering these encouraging outcomes, there are certain 

drawbacks to our strategy. A significant obstacle is the 

dataset's class imbalance, which could have an impact on how 

well the model generalizes to under-represented categories. 

This could be addressed in future research by using 

sophisticated data augmentation techniques or by utilising 

artificial data generation methods like Generative Adversarial 

Networks (GANs). Furthermore, while our current approach 

mostly concentrates on supervised learning, adding self-

supervised or semi-supervised learning frameworks could 

improve model robustness, especially in situations where there 

is a lack of annotated data. Clinically speaking, the suggested 

model has a great deal of promise for incorporation into 

computer-aided diagnostic (CAD) systems, which would help 

pathologists identify and categorize breast cancer. To 

guarantee model generalizability in the actual world, 

additional validation utilizing a variety of datasets from 

various medical institutes is necessary. Moreover, 

interpretability remains a critical aspect of AI-driven 

diagnostics. Future research could explore explainable AI 

techniques to provide clinicians with insights into the model’s 
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decision-making process, increasing trust and adoption in 

clinical settings. 

 

 
Fig .12 Comparison between our model and other mode 

 

V. Conclusion and future work 

The Mask Regional-Convolutional Network (Mask-RCNN) 

segmentation approach is widely used in contrast to earlier 

models that did not use segmentation. With a 97.7% 

classification accuracy for breast cancer tissue pictures, the 

Mask RCNN with Resnet 50 model outperforms the model 

without segmentation. when over 40 characteristics are 

extracted. Because it has less convolutional layers, the epoch 

(iterative) backbone network ResNet50 performs better than 

ResNet101 and is computationally less expensive. By 

including a preprocessing step and expanding the image 

dataset from 400 to 1402 (477 in each class except In Situ), we 

decreased the likelihood of overfitting. In the backbone layer, 

we employed a variety of convolutions and neural network 

models. The accuracy results were significantly enhanced by 

this. The accuracy of the results was further increased by 

altering the number of convolutional layers and using different 

neural network models in the backbone layer. For instance, the 

number of convolutional layers in the ResNet50 model, which 

is currently in use for deep feature extraction, can be altered, 

as can the hyperparameters for the training and validation 

datasets. Validation results could be enhanced by adding more 

filters during training. 

We intend to expand our research to more datasets and 

domains in the future and carry out additional model 

optimizations throughout the training phase. Other 

contemporary data augmentation methods (like GANs) ought 

to be investigated as well. We recognize that a more thorough 

description of experimental design is necessary to guarantee 

critical evaluation and reproducibility. We intend to expand 

our research in subsequent work by evaluating the suggested 

system's generalizability in practical applications by verifying 

it on other datasets. We intend to integrate larger and more 

varied histopathology imaging datasets to further assess the 

scalability and reliability of our methodology, as the current 

collection is restricted to 400 samples. This will enable us to 

improve the model's functionality and guarantee that it can be 

used in a range of clinical situations. 
Table 4. Comparison between our model and other mode 
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