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Abstract—In this paper, an oscillatory cantilever beam that is 

excited transversely at its free end is studied. This type of 

excitation causes the appearance of external and parametric 

forces that enhance the unwanted nonlinear vibrations of the 

beam especially at resonance cases. This dynamical behavior is 

modeled in a nonlinear differential equation to be solved 

analytically and numerically in an approximate sense. In 

addition, positive position feedback (PPF) control algorithm is 

applied through piezoelectric actuators implemented all over the 

beam’s surface in order to reduce such vibrations. Furthermore, 

the simultaneous primary and internal 𝟏: 𝟏 resonance case is 

investigated to see how the control law can overcome it. The 

beam’s overall characteristics are pictured with the aid of the 

multiple scales method in order to judge the effectiveness of the 

controller. Accordingly, the steady-state behavior’s stability is 

tested applying Lyapunov’s first (indirect) method along with 

Routh-Hurwitz criterion. The bifurcation analysis of the 

cantilever beam is shown before and after control with 

comparing the beam’s behavior pre and post control. Numerical 

verifications have been conducted in order to certify the applied 

control algorithm via time responses and phase portraits. 

 
Keywords—Cantilever beam; saddle-node bifurcation; 

simultaneous resonance; positive position feedback; phase plane. 

Nomenclature 

𝑦, 𝑦̇, 𝑦̈ 
Cantilever beam’s displacement, velocity, and 

acceleration 

𝑧, 𝑧̇, 𝑧̈ PPF’s displacement, velocity, and acceleration 

𝑐, 𝜇 Linear viscous damping parameters of the beam and PPF 

√𝛽𝑦, Angular frequencies of the beam and PPF 
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√𝛽𝑐  

𝛼2, 𝛼3 Cubic-nonlinearity parameters of the beam 

𝛼1  Parametric excitation parameter of the beam 

𝐹1, 𝐹̅1 Parametric excitation force amplitudes 

Ω1  Parametric excitation force frequency 

𝑓  Amplitude of the exciting external force 

Ω2  Angular frequency of the exciting external force 

𝑘, 𝛾 Gains of the 𝑧 and 𝑦 signals 

 

I. INTRODUCTION 

onlinear dynamics occurring in the cantilever beams 

is an important topic due to its importance in several 

applications of civil engineering, mechanical 

engineering, spacecraft stations, and satellite 

antennas. Some of the cantilever beam’s mathematical models 

are nonlinear differential equations with periodic-type 

coefficients, and these differential equations are often found in 

parametrically excited beams. Oueini and Nayfeh [1] provided 

a cubic velocity feedback control for a parametrically-excited 

cantilever beam where the response’s amplitude was mitigated 

by the proposed control algorithm through mathematical and 

experimental analysis. Pantographs [2] and asymmetric rotors 

[3] are typical examples of engineering systems that 

confronted a parametric resonance excitation force. However, 

that type of excitation was utilized in energy harvesting [4]. 

Additional systems were analyzed and exploited for 

suppressing the vibrations and studying the stability as in the 

parametrically-excited viscoelastic beam by Zhang et al. [5]. 

They explored the time-varying axial tension which was the 

reason for parametric excitation happened nearly at twice the 

natural frequency of the studied model. In order to suppress 

the horizontal oscillations of a suspended body represented by 

a nonlinear ODE, El-Ganaini et al. [6] In order to finish the 

task with analyzing the impacts of time delay on the entire 

control operation, a time-delayed positive position feedback 

controller was built. designing the PPF's natural frequency to 

match the motion's natural frequency of the levitated body. 

Ferrari and Amabili [7] used four pairs of approximately 

collinear piezoelectric sensors and actuators to control four 

normal modes. Some limitations were evident in the 

experimental findings of the control, particularly in the MIMO 

implementation with the applied PPF algorithm. 

Recently, researchers have been scoping on the discipline of 

chaos. Zhang [8] investigated the non-planar chaotic 

vibrations of a cantilever beam subjected to a mixture of axial 

and transverse excitations using normal form theory, 

Galerkin’s technique, and perturbation methods. Regarding 

N 
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high-injection strength, Mengue and Essimbi [9] represented 

the bifurcations of an optically-injected semiconductor lasers 

by the bifurcation diagrams where different types of 

bifurcation points appeared and the bursting behavior as well. 

The predator-prey of discrete-time model was presented in a 

Holing type IV functional response by Rana and Kulsum [10] 

where the model exhibited chaotic behavior and multi-periodic 

orbits. Kandil et al. [11-13] investigated the time delay effects 

on the PPF vibration control of a rotating blade’s oscillations. 

They modified the form of PPF in order to eliminate the 

drawbacks of the classical one and to enhance the operation of 

the adaptive one where the idea case (zero-time-delay) and the 

practical case (non-zero-time-delay) were studied. Yang and 

Jiang [14] worked on the duffing oscillator under the effects of 

external excitation and a degenerate saddle point in order to 

formulate a chaos criterion using the method of Melnikov. 

Additional nonlinear dynamical models of flexible cantilever 

beams adopted using PPF control strategy variously for 

suppressing the high-amplitude vibrations done in [15-19]. Li 

et al. [20] focused their study on a cantilever micro-beam 

made of nickel where its nonlinear vibrations was measured 

by a non-contact system in order to test for the value of the 

fundamental natural frequency near the primary resonance 

case. Kumar [21] analyzed by experiment the effect of 

transvers harmonic excitations on the dynamical behavior of a 

cantilever beam. In addition, a finite element analysis was 

conducted considering the curvature and inertial nonlinearities 

for verifying the experimental work. Kandil et al. [22-23] 

proposed an adaptation mechanism for tuning the PPF 

controller applied on different engineering models in order to 

eliminate the classical peaks that were present in the behavior 

of the classical PPF. They enhanced their discussion with 2D 

and 3D visualizations for viewing the controllability regions in 

a wider aspect to the reader. Yakovleva et al. [24] derived a 

model of a Nano-structural beam whose shear stiffness was 

low subjected to a distributed transversal load. They adopted 

the methods of Runge-Kutta, Newmark, Sano-Sawada, Kantz, 

Wolf, and Rosenstein in order to extract the Lyapunov 

exponents for testing the model’s dynamical periodicity. 

Zhang et al. [25] improved a model of a two-segment 

deployable beam where the 2D translational deformations 

were involved rather than the traditional model where only 1D 

transversal deformations were involved. Omidi and Mahmoodi 

[26] suppressed the unwanted vibrations in smart structures 

using a nonlinear integral resonant controller where it was a 

flexible practical option. El-Sayed and Bauomy [27] applied 

dual PPF controllers for controlling vertical conveyors’ 

undesired vibrations where they adopted the multiple scales 

method to derive the frequency response equations then they 

did a verification of the gained solutions by a numerical 

simulation. In addition, Niu et al. [28] proposed a fractional 

PPF for creating a wide variety of the controller’s adjusted 

parameters. They did experimental investigations using the 

proposed control algorithm on a vertical tail connected to 

MFC piezoelectric actuator. Abualnaja et al. [29] studied and 

controlled the nonlinear vibrations of Van der Pol-Duffing-

type oscillator under the effect of parametric and external 

exciting forces via nonlinear integral PPF controller. They 

adopted both analytical and numerical techniques in order to 

describe the behavior of the whole mechanism before and after 

applying the control algorithm. Furthermore, PPF controller 

was applied by Amer et al. [30] in order to mitigate the noisy 

vibrations of a suspended cable whose source is external and 

parametric exciting forces. They applied the multiple scales 

method and Rung-Kutta technique to examine the worst 

resonance case occurring in the studied model through 

variating all different parameters. Farokhi et al. [31] studied 

the vibrations of a tip-mass cantilever beam subjected to 

parametric resonant force where a high-speed camera was 

used to catch the deformed deflections of the beam in only one 

period of equilibrium oscillations. Eman at el. [32] studied 

The oscillations of a cantilever beam with transversely 

energized free under external and parametric excitation forces. 

To reduce these vibrations, the Nonlinear Saturation 

Controller (NSC) algorithm is applied using a piezoelectric 

(PZT) actuator. 

In this study, a nonlinear cantilever beam model is presented 

under the effect of external and parametric exciting forces 

where the generated vibrations are reduced using PPF 

controller. The approximate analytical solution and the 

frequency-response equations are derived utilizing the 

multiple scales method [33-34]. The equilibrium solutions’ 

stability, near the simultaneous internal and primary resonance 

case, is tested and investigated. Numerical integration, using 

Rung-Kutta technique, is fulfilled to gain the approximate 

numerical solution besides examining the effects of varying all 

parameters on the frequency-response curves of the vibrating 

beam. Eventually, some conclusions are included to give 

recommendations about the applied control technique showing 

its advantages and drawbacks. The new contribution in this 

work is to suppress the high-amplitude vibration at the beam’s 

free end using PPF controller. A high reduction ratio is 

reached at some specific conditions of the whole system. 

II. MATHEMATICAL ANALYSIS ON THE CANTILEVER 

BEAM’S MOTION 

The nonlinear dynamical model of the studied 

cantilever beam is presented in this section. A PPF controller 

algorithm is shown in Figure (1) where it can be coupled to 

the beam’s model with the help of piezoelectric configuration. 

The cantilever beam’s equation of motion as stated in Ref. [8] 

is written as follows: 

𝑦̈ + 𝑐𝑦̇ + 𝛽𝑦𝑦 − 2𝛼1𝐹1 cos(Ω1𝑡) 𝑦 + 𝛼2𝑦(𝑦𝑦̈ + 𝑦̇2)

+ 𝛼3𝛽𝑦𝑦3 − 2𝐹̅1 cos(Ω1𝑡) 𝑦3 = 𝑓 cos(Ω2𝑡) (1) 

Applying the nonlinear PPF controller to Equation (1), the 

modified beam’s equation will be 

𝑦̈ + 𝑐𝑦̇ + 𝛽𝑦𝑦 − 2𝛼1𝐹1 cos(Ω1𝑡) 𝑦 + 𝛼2𝑦(𝑦𝑦̈ + 𝑦̇2)

+ 𝛼3𝛽𝑦𝑦3 − 2𝐹̅1 cos(Ω1𝑡) 𝑦3 = 𝑓 cos(Ω2𝑡) + 𝑘𝑧 (2) 

𝑧̈ + 𝜇𝑧̇ + 𝛽𝑐𝑧 = 𝛾𝑦 (3) 

To obtain a scaled system of equations which is suitable for 

applying the method of multiple scales, scale transformations 

can be used as 

𝛼1 = 𝜀𝛼1, 𝛼2 = 𝜀𝛼2, 𝛼3 = 𝜀𝛼3, 𝐹̅1 = 𝜀𝐹̅1, 𝑐 = 𝜀𝑐, 

 𝑓 = 𝜀𝑓, 𝑘 = 𝜀𝑘, 𝛾 = 𝜀𝛾, 𝜇 = 𝜀𝜇 (4) 

where 𝜀 (0 < 𝜀 ≪ 1) is a small perturbation parameter. In 

addition, 𝛽𝑦 and 𝛽𝑐 can be replaced by 𝜔2 and 𝜔𝑐
2 in the next 

stage of analysis. 

https://www.scirp.org/journal/articles.aspx?searchcode=Zhiyang++Yang&searchfield=authors&page=1
https://www.scirp.org/journal/articles.aspx?searchcode=Tao++Jiang&searchfield=authors&page=1
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Figure 1. (a) Cantilever beam with piezoelectric configuration, (b) the controlled cantilever beam block diagram. 

By substituting Equation (4) into Equations. (2) and (3), Under 

coupled parametric and driving excitation, we arrive at the 

following dimensionless two-degrees of freedom nonlinear 

system: 

𝑦̈ + 𝜀𝑐𝑦̇ + 𝜔2𝑦 − 2𝜀𝛼1𝐹1 cos(Ω1𝑡) 𝑦 + 𝜀𝛼2𝑦(𝑦𝑦̈ + 𝑦̇2)
+ 𝜀𝛼3𝜔

2𝑦3 − 2𝜀𝐹̅1 cos(Ω1𝑡) 𝑦3 = 𝜀𝑓 cos(Ω2𝑡) + 𝜀𝑘𝑧 (5) 

𝑧̈ + 𝜀𝜇𝑧̇ + 𝜔𝑐
2𝑧 = 𝜀𝛾𝑦 (6) 

We seek a first-order uniform solution of Equations. (5) and 

(6), by using multiple scales method [32, 33] as: 

𝑦(𝑡, 𝜀) = 𝑦0(𝑇0, 𝑇1) + 𝜀𝑦1(𝑇0, 𝑇1) + ⋯ (7.a) 

𝑧(𝑡, 𝜀) = 𝑧0(𝑇0, 𝑇1) + 𝜀𝑧1(𝑇0, 𝑇1) + ⋯ (7.b) 

where 𝑇0 = 𝑡 and 𝑇1 = 𝜀𝑡 are the adopted time scales. The 

time derivatives in terms of 𝑇0 and 𝑇1, will take the form 
𝑑

𝑑𝑡
=

𝜕

𝜕𝑇0

𝜕𝑇0

𝜕𝑡
+

𝜕

𝜕𝑇1

𝜕𝑇1

𝜕𝑡
= 𝐷0 + 𝜀𝐷1 (8.a) 

𝑑2

𝑑𝑡2
= 𝐷0

2 + 2𝜀𝐷0𝐷1 + 𝜀2𝐷1
2 (8.b) 

Substituting Equations. (7) and (8) into (5) and (6) and 

equating the coefficients of 𝜀 on both sides give the following 

𝑂(𝜀0): 
𝐷0

2𝑦0 + 𝜔2𝑦0 = 0 (9.a) 

𝐷0
2𝑧0 + 𝜔𝑐

2𝑧0 = 0 (9.b) 

and, 𝑂(𝜀1): 
𝐷0

2𝑦1 + 𝜔2𝑦1 = −2𝐷0𝐷1𝑦0 − 𝑐𝐷0𝑦0 − 𝛼2𝑦0
2𝐷0

2𝑦0 
+2𝛼1𝐹1 cos(Ω1𝑡) 𝑦0 − 𝛼2𝑦0(𝐷0𝑦0)

2 
−𝛼3𝜔

2𝑦0
3 + 2𝐹̅1 cos(Ω1𝑡) 𝑦0

3 
+𝑓 cos(Ω2𝑡) + 𝑘𝑧0 (10.a) 

𝐷0
2𝑧1 + 𝜔𝑐

2𝑧1 = −2𝐷0𝐷1𝑧0 − 𝜇𝐷0𝑧0 + 𝛾𝑦0 (10.b) 

Equations (9) have a solution in the form 

𝑦0 = 𝐴𝑒𝑖𝜔𝑇0 + 𝐴̅𝑒−𝑖𝜔𝑇0 (11.a) 

𝑧0 = 𝐴1𝑒
𝑖𝜔𝑐𝑇0 + 𝐴̅1𝑒

−𝑖𝜔𝑐𝑇0 (11.b) 

where the over-barred terms denote the complex conjugate of 

the same term. Substituting Equations. (11) into Equations. 

(10), the following solutions are obtained 

𝐷0
2𝑦1 + 𝜔2𝑦1 = −2[𝑖𝜔𝐴′𝑒𝑖𝜔𝑇0] − 𝑐[𝑖𝜔𝐴𝑒𝑖𝜔𝑇0] 

+𝛼1𝐹1𝐴[𝑒𝑖(𝜔+Ω1)𝑇0 + 𝑒𝑖(𝜔−Ω1)𝑇0] 

+𝐹̅1𝐴
3𝑒𝑖(3𝜔+Ω1)𝑇0 

−𝛼2𝜔
2[𝐴3𝑒3𝑖𝜔𝑇0 + 3𝐴̅𝐴2𝑒𝑖𝜔𝑇0] 

+𝛼2𝜔
2[𝐴3𝑒3𝑖𝜔𝑇0 − 𝐴2𝐴̅𝑒𝑖𝜔𝑇0] 

+3𝐹̅1𝐴
2𝐴̅𝑒𝑖(𝜔+Ω1)𝑇0 − 3𝛼3𝜔

2𝐴2𝐴̅𝑒𝑖𝜔𝑇0 

−𝛼3𝜔
2𝐴3𝑒3𝑖𝜔𝑇0 +

𝑓

2
𝑒𝑖Ω2𝑇0 

+𝑘[𝐴1𝑒
𝑖𝜔𝑐𝑇0] + 𝑐. 𝑐. (12.a) 

𝐷0
2𝑧1 + 𝜔𝑐

2𝑧1 = −2𝐷1[𝑖𝜔𝑐𝐴1𝑒
𝑖𝜔𝑐𝑇0] − 𝜇𝑖𝜔𝑐𝐴1𝑒

𝑖𝜔𝑐𝑇0 
+𝛾𝐴𝑒𝑖𝜔𝑇0 + 𝑐. 𝑐. (12.b) 

where 𝑐. 𝑐. denotes the complex conjugates of the preceding 

terms. The worst resonance case that was deduced form 

Equations. (12), is the simultaneous resonance (2 = 𝜔 =
𝜔𝑐). By using the detuning parameters 𝜎1 and 𝜎2, the 

proximity of the simultaneous resonance can be quantitatively 

defined as 

 Ω2 = 𝜔 + 𝜀𝜎1 (13.a) 

𝜔𝑐 = 𝜔 + 𝜀𝜎2 (13.b) 

Substituting Equations. (13) into Equations. (12), then 

eliminating the secular terms for 𝑦 and 𝑧 solutions in order to 

get the following solvability conditions 

−2𝑖𝜔𝐴′ − 𝑐𝑖𝜔𝐴 + 2𝛼2𝜔
2𝐴2𝐴̅ − 3𝛼3𝜔

2𝐴2𝐴̅

+
𝑓

2
𝑒𝑖𝜎1𝑇1 + 𝑘𝐴1𝑒

𝑖𝜎2𝑇1 = 0 
(14.a) 

−2𝑖𝜔𝑐𝐴1
′ 𝑒𝑖𝜎2𝑇1 − 𝜇𝑖𝜔𝑐𝐴1𝑒

𝑖𝜎2𝑇1 + 𝛾𝐴 = 0 (14.b) 

It is convenient to express 𝐴(𝑇1) and 𝐴1(𝑇1) in the complex 

polar form. 

𝑦̈ + 𝑐𝑦̇ + 𝛽𝑦𝑦 − 2𝛼1𝐹1 cos(Ω1𝑡) 𝑦 + 𝛼2𝑦(𝑦𝑦̈ + 𝑦̇2) + 𝛼3𝛽𝑦𝑦3

− 2𝐹̅1 cos(Ω1𝑡) 𝑦3 

PPF  

𝑧̈ + 𝜇𝑧̇ + 𝛽c𝑧 
 

𝑘 𝛾 

(t)y
(t)zk z y

2cos( t)f 

 

              
PZT 

Excitation 

Beam Excitation 
(t)y  

1 1F cos( t)
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𝐴 =
𝑎1

2
𝑒𝑖𝑏1 (15.a) 

𝐴1 =
𝑎2

2
𝑒𝑖𝑏2  (15.b) 

where 𝑎1, 𝑎2, 𝑏1 and 𝑏2 are real functions of 𝑇1. By inserting 

Equations. (15) into (14), the following can be gained 

−𝑖𝜔𝑎1
′ + 𝜔𝑎1𝑏1

′ −
1

2
𝑐𝑖𝜔𝑎1 +

1

4
𝛼2𝜔

2𝑎1
3 −

3

8
𝛼3𝜔

2𝑎1
3

+
𝑓

2
𝑒𝑖(𝜎1𝑇1−𝑏1) +

1

2
𝑘𝑎2𝑒

𝑖(𝜎2𝑇1+𝑏2−𝑏1) = 0 
(16) 

−𝑖𝜔𝑐𝑎2
′ + 𝜔𝑐𝑎2𝑏2

′ −
1

2
𝜇𝑖𝜔𝑐𝑎2 +

1

2
𝛾𝑎1𝑒

𝑖(−𝜎2𝑇1+𝑏1−𝑏2)

= 0 (17) 

Separating real and imaginary parts from Equations. (16) and 

(17), we have 

𝑎1
′ = −

1

2
𝑐𝑎1 +

𝑓

2𝜔
sin𝜙1 +

1

2𝜔
𝑘𝑎2 sin𝜙2 (18.a) 

𝑎1𝑏1
′ = −

1

4
𝛼2𝜔𝑎1

3 +
3

8
𝛼3𝜔𝑎1

3 −
𝑓

2𝜔
cos 𝜙1 

−
1

2𝜔
𝑘𝑎2 cos 𝜙2 

(18.b) 

𝑎2
′ = −

1

2
𝜇𝑎2 −

1

2𝜔𝑐

𝛾𝑎1 sin𝜙2 (18.c) 

𝑎2𝑏2
′ = −

1

2𝜔𝑐

𝛾𝑎1 cos𝜙2 (18.d) 

where 

𝜎1𝑇1 − 𝑏1 = 𝜙1 (19.a) 

𝜎2𝑇1 + 𝑏2 − 𝑏1 = 𝜙2 (19.b) 

Substituting the 𝑇1-derivatives of Equations. (19) into (18) 

gives a modified autonomous system of differential equations 

𝑎1
′ = −

1

2
𝑐𝑎1 +

𝑓

2𝜔
sin𝜙1 +

1

2𝜔
𝑘𝑎2 sin𝜙2 (20.a) 

𝜙1
′ = 𝜎1 +

1

4
𝛼2𝜔𝑎1

2 −
3

8
𝛼3𝜔𝑎1

2 +
𝑓

2𝜔𝑎1

cos𝜙1 

+
1

2𝜔𝑎1

𝑘𝑎2 cos𝜙2 
(20.b) 

𝑎2
′ = −

1

2
𝜇𝑎2 −

1

2𝜔𝑐

𝛾𝑎1 sin𝜙2 (20.c) 

𝜙2
′ = 𝜎2 +

1

4
𝛼2𝜔𝑎1

2 −
3

8
𝛼3𝜔𝑎1

2 +
𝑓

2𝜔𝑎1

cos 𝜙1 

+
1

2𝜔𝑎1

𝑘𝑎2 cos 𝜙2 −
1

2𝜔𝑐𝑎2

𝛾𝑎1 cos 𝜙2 
(20.d) 

The above equations govern the fluctuations in the beam’s 

motion amplitude and phase that characterize its output 

response. 

 

III. STABILITY TEST VIA JACOBIAN MATRIX AND 

ROUTH-HURWITZ CRITERION 

For obtaining the fixed points of Equations. (20), we put 𝑎1
′ =

0  and 𝑎2
′ = 𝜙1

′ = 𝜙2
′ = 0 to give us the beam’s and the 

controller’s steady-state amplitudes and phases as 
𝑓

2𝜔
sin 𝜙1 =

1

2
𝑐𝑎1 +

𝜔𝑐

2𝜔𝛾𝑎1

𝑘𝜇𝑎2
2 (21.a) 

𝑓

2𝜔
cos𝜙1 = −𝜎1𝑎1 −

1

4
𝛼2𝜔𝑎1

3 +
3

8
𝛼3𝜔𝑎1

3 

+
𝜔𝑐

𝛾𝑎1𝜔
𝜎1𝑘𝑎2

2 −
𝜔𝑐

𝛾𝑎1𝜔
𝜎2𝑘𝑎2

2 
(21.b) 

1

2𝜔𝑐

𝛾𝑎1 sin𝜙2 = −
1

2
𝜇𝑎2 (21.c) 

1

2𝜔𝑐

𝛾𝑎1 cos𝜙2 = −𝜎1𝑎2 + 𝜎2𝑎2 (21.d) 

The beam’s and controller’s frequency response equations can 

be derived from Equations. (21) which takes the following 

form 

(
𝑓

2𝜔
)

2

= (
1

2
𝑐𝑎1 +

𝜔𝑐

2𝜔𝛾𝑎1

𝑘𝜇𝑎2
2)

2

 

+(−𝜎1𝑎1 −
1

4
𝛼2𝜔𝑎1

3 +
3

8
𝛼3𝜔𝑎1

3 

+
𝜔𝑐

𝛾𝑎1𝜔
𝜎1𝑘𝑎2

2 −
𝜔𝑐

𝛾𝑎1𝜔
𝜎2𝑘𝑎2

2)
2

 
(22) 

(
1

2𝜔𝑐

𝛾𝑎1)
2

= (
1

2
𝜇𝑎2)

2

+ (−𝜎1𝑎2 + 𝜎2𝑎2)
2 (23) 

A Jacobian matrix is derived from Equations. (20) to assess 

the stability of the steady-state solutions using the resultant 

matrix’s eigenvalues. This can be done by letting that 

𝑎𝑛 = 𝑎𝑛0 + 𝑎𝑛1 (24.a) 

𝜙𝑛 = 𝜙𝑛0 + 𝜙𝑛1 (24.b) 

where 𝑎𝑛0 and 𝜙𝑛0 satisfy Equations. (21), while 𝑎𝑛1 and 𝜙𝑛1 

are small-valued quantities compared to 𝑎𝑛0 and 𝜙𝑛0. 

Substituting Equations. (24) into (20) with linearizing the 

terms containing 𝑎𝑛1 and 𝜙𝑛1 lead to 

[
 
 
 
𝑎̇11

𝜙̇11

𝑎̇21

𝜙̇21]
 
 
 

= [𝐽] [

𝑎11

𝜙11

𝑎21

𝜙21

] = [

𝑢11 𝑢12 𝑢13 𝑢14

𝑢21 𝑢22 𝑢23 𝑢24

𝑢31 𝑢32 𝑢33 𝑢34

𝑢41 𝑢42 𝑢43 𝑢44

] [

𝑎11

𝜙11

𝑎21

𝜙21

] 

(25) 

where the entries of the Jacobian matrix 𝐽 are given in the 

appendix. The Jacobian matrix’s characteristic equation is 

𝜐4 + 𝜉1𝜐
3 + 𝜉2𝜐

2 + 𝜉3𝜐 + 𝜉4 = 0 (26) 

where 𝜐 denotes the eigenvalue and 𝜉1, 𝜉2, 𝜉3, 𝜉4 are given in 

the appendix. Accordingly, if all the real parts of 𝜐 are 

negative, then the steady-state solution is stable. Otherwise, it 

is unstable. In addition, the necessary and sufficient criteria, 

according to Ruth-Hurwitz criterion, for all the roots in 

Equation (26), to have negative real parts are 

𝜉1 > 0, 𝜉1𝜉2 – 𝜉3 > 0, 𝜉3(𝜉1𝜉2 – 𝜉3) – 𝜉1𝜉4 > 0, 𝜉4 > 0 (27) 

 

IV. GRAPHICAL ANALYSIS ON THE CANTILEVER 

BEAM’S MOTION 

 

In this section, from Ref. [8], the selected values for the beam 

and controller parameters are chosen as: 𝜔 = 0.5, 𝜎2 = 0, 

𝛼1 = 1, 𝑘 = 0.1, 𝛼2 = 13.2, 𝜔𝑐 = 0.5, 𝛾 = 0.1, 𝛼3 = 5.01, 

𝑐 = 0.011, 𝐹 = −0.001, 𝐹̅ = 0.1, 𝜇 = 0.001, Ω1 = 0.5, 

unless otherwise stated. The upcoming graphical curves 

explain the relationship between the amplitude of response 𝑎 

and the beam’s and the PPF’s detuning settings with various 

exciting forces 𝑓. These curves show the stable solutions as 

solid lines and the unstable solutions as dashed lines. Figure 

(2) displays the main system’s and the controller’s frequency-

response curves for various excitation force values 𝑓. In 

Figure (2a), the excitation force amplitude 𝑓 determines the 

main system’s steady-state amplitude, which is a 

monotonically growing function. The jump phenomena 
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appears as a result of the dominance of the nonlinearity, and 

the curve is bent to the left as the force amplitude increases, 

denoting a softening effect. The equilibrium amplitudes of the 

beam and PPF, in Figures (2b) and (2c), are directly 

proportional to the exciting force amplitude 𝑓. Two peaks are 

obtained one at 𝜎1 = 0.1 and the other at 𝜎1 = −0.1, so they 

are creating a canyon in between whose length is about 0.2 as 

depicted in the figure. This means that the effective operating 

interval for the PPF is approximately between the two values 

𝜎1 = ±0.1, and the beam’s steady-state amplitude is at its 

lowest level at 𝜎1 = 0. Also, the jump phenomena appear 

obviously for the PPF and the beam as depicted by the curves. 

Figure (3) shows the effect of varying the control factor 𝑘 on 

the frequency-response curves of the beam and the PPF. In 

Figures (3a) and (3b), the bandwidth between the produced 

two peaks are increasing monotonically with the control factor 

𝑘. However, the beam’s and PPF’s peak amplitudes are not 

affected by changing the values of 𝑘. 

 

 

 
                                                     (a)                                                                                                (b) 

 
                                                                                                       (c) 

Figure 2.  Frequency-response curves pre and post PPF control: (a) beam’s amplitude pre-control, (b) beam’s amplitude post-

control, (c) PPF’s amplitude. 

 
                                                      (a)                                                                                                  (b) 

Figure 3. Frequency-response curves after PPF control at 𝑓 = 0.001: (a) beam’s amplitude pre-control, (b) PPF’s amplitude. 
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The beam’s and PPF’s force-response curves are shown in 

Figures (4) and (5). Figure (4) clearly shows the relationship 

between the exciting force 𝑓 and the beam’s amplitude when 

𝜎1 = 0, is nonlinear before control and the steady-state 

amplitude of the beam increases for a little push in the exciting 

force. After control, the relation becomes almost-horizontal 

and stable approaching the trivial case. The exciting force 

grows linearly as the PPF’s amplitude rises. According to 

Figure (5), the beam’s and PPF’s amplitudes grow 

monotonically in both cases of pre and post control related to 

increasing the exciting force. The nonlinearity is dominant 

over the beam’s response before and after control. Through 

the interval −0.1 < 𝜎1 < 0, of the detuning parameter before 

control, the beam’s amplitude is unstable. After control, the 

amplitudes are unstable for an interval 0.07 < 𝜎1 < 0.1, of the 

detuning parameter 𝜎1. 

place table headings above the tables. Do not include captions 

as part of the figures, or put them in “text boxes” linked to the 

figures. Also, do not place borders around the outside of your 

figures. 

 
          (a)                                                                                                 (b) 

Figure 4.  Force-response curves pre and Post PPF control: (a) beam’s amplitude pre- and post-control, (b) PPF’s amplitude. 

 
             (a)                                                                                                    (b) 

Figure 5.  Force-response curve at 𝜎1 = −0.1 pre and post PPF control: (a) beam’s amplitude pre- and post-control, (b) PPF’s 

amplitude.

Time history of the equilibrium amplitude of the 

uncontrolled and controlled beam near the simultanous 

resonance case Ω = 𝜔 + 𝜎1 and 𝜔𝑐 = 𝜔 + 𝜎2 (where Ω =
𝜔 = 𝜔𝑐 = 0.5) are numerically simulated as shown in 

Figures (6) to (8) using the MATLAB command ODE45. 

At 𝑓 = 0.001 (𝜎1 = 𝜎2 = 0) according to Figure (6a), the 

beam’s uncontrolled amplitude is approximately 0.105, 

while tends to zero for the controlled beam’s amplitude in 

Figure (6b) and the PPF’s amplitude is around 0.012. These 

results confirm a good agreement between the analytical 

and numerical solutions. In Figure (2a), the beam’s 

uncontrolled amplitude is approximately 0.099, the 

controlled beam’s amplitude is zero in Figure (2b) and the 

PPF’s amplitude is around 0.0099 in Figure (2c). 

According to the phase portraits of Figures (6b), (6d), and 

(6f), the uncontrolled beam, the controlled beam, and the 

PPF all have stable steady-state amplitudes. The controller 

effectiveness for this resonance case is about 105. This 

means that the oscillations have neen reduced by about 

99%. 
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       (a)                                                          (b) 

 
           (c)                                                                                              (d) 

 
        (e)                                                                                                (f) 

Figure 6. The cantilever beam’s time-vibrations before and after control for 𝑓 = 0.001: (a, b) the beam’s time response and 

phase plane before control; (c, d) the beam’s time response and phase plane after control; (e, f) time reponse and 

phase plane of the PPF.

 

At 𝑓 = 0.004 (𝜎1 = 𝜎2 = 0) according to Figure (7a), the 

uncontrolled beam has an amplitude of around 0.177, whereas 

the controlled beam, shown in Figure (7b), has an amplitude 

that tends to about zero and is approximately 0.055. 

According to the phase plane of Figures (7a), (7b), and (7c), 

the steady-state amplitude of the beam and the PPF are all 

stable. These results confirm a good agreement between the 

analytical and numerical solutions. In Figure (2a), the beam’s 

uncontrolled amplitude is approximately 0.175, the controlled 

beam’s amplitude is zero in Figure (2b) and the PPF’s 

amplitude is around 0.0399 in Figure (2c). 
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          (a)                                                   (b) 

 
          (c)                                                                                                    (d) 

 
          (e)                                                                                                    (f) 

Figure 7. The cantilever beam’s time-vibrations before and after control for 𝑓 = 0.004:(a, b) the beam’s time response and 

phase plane before control; (c, d) the beam’s time response and phase plane after control; (e, f) time response and 

phase plane of the PPF.

 

At 𝑓 = 0.0222 (𝜎1 = −0.1, 𝜎2 = 0), the uncontrolled beam’s 

amplitude is around 0.24, and it stabilizes as depicted in 

Figure (8a). But the amplitude of the controlled beam and the                   

PPF become unstable as shown in the phase portraits of 

Figures (8b) and (8c). This means that the force 𝑓 should not 

exceed 0.0222 in the controlled case. 
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     (a)                                                                          (b) 

 
             (c)                                                                                                   (d) 

 
               (e)                                                                                                    (f) 

Figure 8. The cantilever beam’s time-vibrations before and after control for 𝜎1 = −0.1, 𝑓 = 0.0222: (a, b) the beam’s time 

reponse and phase plane before control; (c, d) the beam’s time response and phase plane after control; (e, f) time 

history and phase plane of the PPF. 
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V.  CONCLUSION 

This work discussed the analysis and control of the 

nonlinear oscillations in a parametrically-excited dynamical 

cantilever beam system at its free end. We applied PPF control 

in this model and extracted analysis of the equation before and 

after control. Several responses showing the 

dynamical behavior were included under control. Finally, we 

compared between the analytical and the numerically results 

before and after control. These results can be summarized in 

the following points: 

1. Before control, the cantilever beam 

system suffered from high vibration amplitudes and jump 

phenomenon due to bifurcation points making the system 

unstable in some conditions. 

2. After control, the system became more stable but there 

was some jumps and quite high vibration amplitudes. 

3. The system vibrations reached minimum levels in range 

𝜎1 ∈ [−0.08, 0.08] especially at 𝜎1 = 0. 

4. To increase bandwidth stability, we increased the gain of 

controller to make the system more stable. 

5. The controlled system became stable when the force 

amplitude was small until reaching 𝑓 = 0.0222. 

6. When the force amplitude reached 0.0222, the model 

exhibited unstable behavior which was a drawback of the 

proposed controller at large force amplitudes. 

Finally, we reached better reduction ratio than previous 

published research, as the reduction ratio for PPF controller 

reach 99%, while previously published research [32] reaches 

89%, and this means that PPF controller is more suitable for 

the cantilever beam. 

VI. SUGGESTIONS FOR FUTURE WORK 

In the following, we introduce some suggestions for further 

developments: 

1. Studying more complicated nonlinear dynamical systems 

that inherently have fractional order terms. 

2. Involving experimental data to make more verification for 

the applied control strategies. 

3. Searching for up-to-date control algorithms that enhance 

the control process more and more. 

4. The proposed control strategies need to be tested on real-

life structures like helicopter blades, robot manipulators 

and jet engine rotating blades. 

VII. APPENDIX 

The entries of the Jacobian matrix 𝐽 in Eq. (25): 

𝑢11 = −
1

2
𝑐 

𝑢12 =
𝑓

2𝜔
cos𝜙10 

𝑢13 =
1

2𝜔
𝑘 sin𝜙20 

𝑢14 =
1

2𝜔
𝑘𝑎20 cos𝜙20 

𝑢21 =
3

4
𝛼2𝜔𝑎10 −

9

8
𝛼3𝜔𝑎10 +

𝜎1

𝑎10

 

𝑢22 = −
𝑓

2𝜔𝑎10

sin 𝜙10 

𝑢23 =
1

2𝜔𝑎10

𝑘 cos𝜙20 

𝑢24 = −
1

2𝜔𝑎10

𝑘𝑎20 sin𝜙20 

𝑢31 = −
1

2𝜔𝑐

𝛾 sin 𝜙20 

𝑢32 = 0 

𝑢33 = −
1

2
𝜇 

𝑢34 = −
1

2𝜔𝑐

𝛾𝑎10 cos 𝜙20 

𝑢41 =
3

4
𝛼2𝜔𝑎10 −

9

8
𝛼3𝜔𝑎10 +

2𝜎1

𝑎10

−
𝜎2

𝑎10

 

𝑢42 = −
𝑓

2𝜔𝑎10

sin 𝜙10 

𝑢43 =
𝜔𝑐𝑘

𝜔𝛾𝑎10
2

(−𝜎1𝑎20 + 𝜎2𝑎20) +
1

𝑎20
2

(−𝜎1𝑎20 + 𝜎2𝑎20) 

𝑢44 =
𝑘𝜔𝑐

2𝛾𝜔𝑎10
2 𝜇𝑎20

2 −
1

2
𝜇 

The coefficients of Eq. (26): 

𝜉1 = −𝑢11 − 𝑢22 − 𝑢33 − 𝑢44 

𝜉2

= −𝑢12𝑢21 + 𝑢11𝑢22 + 𝑢33𝑢11 + 𝑢11𝑢44 + 𝑢33𝑢22 + 𝑢44𝑢22

− 𝑢34𝑢43 − 𝑢42𝑢24 − 𝑢23𝑢32 − 𝑢13𝑢31 − 𝑢14𝑢42 − 𝑢14𝑢41 

𝜉3

= −𝑢11𝑢33𝑢22 − 𝑢11𝑢44𝑢22 + 𝑢11𝑢34𝑢43 − 𝑢33𝑢44𝑢22

− 𝑢11𝑢42𝑢24 − 𝑢22𝑢33𝑢44 + 𝑢34𝑢43𝑢22 + 𝑢11𝑢23𝑢32

+ 𝑢23𝑢32𝑢44 − 𝑢23𝑢34𝑢42 − 𝑢24𝑢32𝑢43 + 𝑢24𝑢33𝑢42

+ 𝑢12𝑢21𝑢33 + 𝑢12𝑢21𝑢44 − 𝑢12𝑢23𝑢31 − 𝑢12𝑢24𝑢41

− 𝑢13𝑢32𝑢21 + 𝑢13𝑢22𝑢31 + 𝑢13𝑢31𝑢44 − 𝑢13𝑢34𝑢41

− 𝑢14𝑢21𝑢42 + 𝑢14𝑢22𝑢42 − 𝑢14𝑢31𝑢43 + 𝑢14𝑢42𝑢33 

𝜉4

= 𝑢11𝑢22𝑢33𝑢44 − 𝑢11𝑢34𝑢43𝑢22 − 𝑢11𝑢23𝑢32𝑢44

− 𝑢11𝑢23𝑢34𝑢42 − 𝑢11𝑢24𝑢32𝑢43 − 𝑢11𝑢24𝑢33𝑢42

− 𝑢12𝑢21𝑢33𝑢44 + 𝑢12𝑢21𝑢34𝑢43 + 𝑢12𝑢23𝑢31𝑢44

− 𝑢12𝑢23𝑢34𝑢41 − 𝑢12𝑢24𝑢31𝑢43 + 𝑢12𝑢24𝑢41𝑢33

+ 𝑢13𝑢21𝑢32𝑢44 − 𝑢13𝑢21𝑢34𝑢42 − 𝑢13𝑢22𝑢31𝑢44

+ 𝑢13𝑢22𝑢34𝑢41 + 𝑢13𝑢24𝑢31𝑢42 − 𝑢13𝑢24𝑢32𝑢41

− 𝑢14𝑢21𝑢32𝑢43 + 𝑢14𝑢21𝑢42𝑢33 + 𝑢14𝑢22𝑢31𝑢43

− 𝑢14𝑢22𝑢42𝑢33 − 𝑢14𝑢23𝑢31𝑢42 + 𝑢14𝑢23𝑢32𝑢41 
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