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Abstract— Skin cancer is a growing global health concern, and 

early detection is essential for effective treatment. Deep learning 

algorithms show promise for skin cancer diagnosis, particularly 

for self-monitoring applications. However, current systems are 

limited by narrow training datasets and lack of real-world 

flexibility. This study proposes a robust deep learning framework 

with an enhanced optimizer to address these challenges. 

Experiments on the ISIC, HAM10000, and a mixed dataset 

demonstrate improved accuracy and generalization compared to 

regular optimizers. The approach emphasizes the need for better 

dataset diversity, model accuracy, and user experience for broader 

adoption. This paper aims to improve skin cancer detection by 

leveraging an optimized convolutional neural network model, 

incorporating a mixed dataset, enhanced optimizer, and web 

integration for early diagnosis. In this paper we introduce a mixed 

dataset (i.e., ISIC, DermNet, and Images collected from Egyptian 

hospitals). The innovation lies in the creation of a diverse dataset, 

a novel optimizer, and a user-friendly web application, which 

collectively enhance detection accuracy and accessibility. The 

obtained results of the enhanced optimizer using the ISIC and 

HAM10000 datasets, are efficient as compared with Adam 

optimizer. It was observed that, the best performance was 

achieved by applying the enhanced optimizer to the mixed dataset. 

 
Keywords— Skin Cancer - Optimizer – Deep Learning – Datasets 

- Early detection - Computer-aided design (CAD) systems – 

Dermoscopy. 

I. INTRODUCTION 

kin cancer, especially malignant melanoma, is a 

significant global health issue with rising incidence and 

high mortality rates. In 2022, there were about 330,000 

new melanoma cases and nearly 60,000 deaths. The highest 

incidence rates are in Australia and Denmark, affecting men 

more than women, particularly the middle-aged and elderly. 

Early detection is crucial, with a 5-year relative survival rate of 

94.1% in the US [1-2]. Current diagnostic methods, including 

visual exams and biopsies, rely on clinician expertise, leading 
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to variable accuracy. Dermoscopy improves visualization but 

still depends on expert interpretation [3]. AI and ML-based 

CAD systems analyze large datasets to detect melanoma 

patterns, enhancing early detection and aiding decision-making. 

AI can outperform human experts in some tasks but is meant to 

complement them [4-5]. Integrating AI into clinical practice 

faces challenges like inconsistent image resolution, precise 

segmentation, and generalization across datasets. The 

computational complexity of AI algorithms also presents 

obstacles for real-time use, requiring careful integration and 

proper training for healthcare professionals [6-7]. Standardizing 

dataset documentation and exploring approaches like Siamese 

neural networks with triplet loss can improve accuracy and 

sensitivity [8-9]. This research aims to enhance CAD 

techniques for skin cancer detection by developing a diverse 

mixed dataset, creating a novel optimizer, and constructing a 

user-friendly web application. The system will undergo 

rigorous testing to ensure accuracy and reliability, addressing 

current diagnostic limitations [10-11]. Leveraging AI and ML, 

this research seeks to improve early detection and patient 

outcomes [12-13]. In 2022, over 331,722 new cases of skin 

cancer were reported [14]. Tables 1 and 2 list the countries with 

the highest skin cancer incidence and deaths, with Australia and 

Denmark having the highest rates. Age-standardized rates 

(ASR) allow for accurate comparisons across populations. 

Table 2 shows skin cancer deaths, in 2022, with New Zealand 

having the highest overall mortality rate from skin cancer, 

followed by Norway. 

Figure 1 indicates that from 2017 to 2021 in the U.S. melanoma 

of the skin was most commonly diagnosed in individuals aged 

65–74. This age group had the highest incidence of new 

melanoma cases, reflecting increased risk due to cumulative sun 

exposure and age-related factors. The data highlights the 

importance of skin cancer prevention and monitoring in older 

adults 
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TABLE 1. SKIN CANCER RATES IN 2022 FOR 10 

COUNTRIES, [14]. 

 
TABLE 2. SKIN CANCER DEATHS IN 2022 FOR 10 

COUNTRIES, [14] 

 

Rank Country Number ASR/100,000 

 World 58,667 0.53 

1 United States of America 7,368 1.0 

2 China 5,385 0.20 

3 Russian Federation 3,928 1.5 

4 Germany 3,303 1.4 

5 United Kingdom 2,626 1.5 

6 Italy 2,463 1.5 

7 Brazil 2,273 0.73 

8 India 2,197 0.16 

9 France (metropolitan) 2,087 1.4 

10 Poland 1,882 1.9 

 

 

 
FIGURE 1 PERCENTAGE OF NEW MELANOMA 

SKIN CANCER CASES BY AGE GROUP IN US, [15] 

 

Figure 2 presents data on melanoma-related deaths across 

different age groups in the U.S. from 2018 to 2022. The analysis 

highlights that the percent of deaths due to melanoma of the 

skin is highest among individuals aged 65–74. This trend 

underscores the increased risk of melanoma-related mortality in 

this age group compared to others. 

 
FIGURE 2 MELANOMA-RELATED MORTALITY BY 

AGE GROUP IN THE U.S. (2018–2022), [15]. 

 

This paper enhances skin cancer detection by developing an 

optimized deep learning framework that integrates diverse 

datasets and a web-based application for early diagnosis, 

featuring a mixed dataset and enhanced optimizer to overcome 

limitations of existing methods.  

The paper is organized as follows: Section 2 introduces the 

related work and overview of the research in skin cancer 

detection. Section 3 presents the proposed methodology and 

introduces the mixed dataset, enhanced optimizer, and web-

Based software for skin cancer detection. Section 4 introduces 

the results and discussions for the performance evaluation of 

the proposed approach. The conclusion summarizes the 

findings and highlights the significance of the study as 

presented in Section 5. 

II. RELATED WORK 

Skin cancer, particularly melanoma, has garnered significant 

research interest due to its growing incidence and mortality risk. 

The ISIC (International Skin Imaging Collaboration) Archive 

plays a pivotal role by providing extensive dermoscopic image 

datasets that are critical for advancing melanoma detection 

through machine learning techniques. Notably, the ISIC 2018 

and 2020 challenges have delivered valuable annotated 

datasets, which are fundamental for developing and evaluating 

skin cancer detection algorithms [16]. Research utilizing these 

datasets has led to significant advancements. The research gaps 

include the need for more diverse and balanced datasets to 

address biases in skin cancer classification. Further 

improvements are needed in handling less common skin cancer 

types and enhancing the model's robustness across various 

image qualities. Additionally, exploring real-time model 

performance in clinical settings remains a key area for future 

research. ISIC and HAM10000 datasets are essential for 

advancing melanoma detection, with ISIC providing a wide 

range of dermoscopic images annotated for skin cancer 

classification. The analysis of these datasets reveals significant 

trends, such as the increasing number of dataset downloads, 

with top datasets representing the majority of traffic. 

Furthermore, the integration of metadata, such as patient 

demographics and clinical information, has been shown to 

improve model performance by offering richer data for training. 

The incorporation of synthetic data augmentation, through 

methods like GANs, haTas further enhanced the diversity of 

images, helping to improve model robustness and accuracy. 

Rank Country Number ASR/100,000 

 World 331,722 3.2 

1 United States of America 101,388 16.5 

2 Germany 21,976 12.1 

3 United Kingdom 19,712 15.3 

4 Australia 16,819 37.0 

5 France (metropolitan) 15,729 13.5 

6 Italy 13,769 12.7 

7 Russian Federation 12,903 5.3 

8 Canada 11,383 14.5 

9 Brazil 9,676 3.3 

10 China 8,789 0.37 
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Deep convolutional neural networks (CNNs) achieve 

dermatologist-level accuracy in skin cancer classification using 

large clinical image datasets. Ensemble learning, as shown in 

the ISIC 2018 challenge, enhances diagnostic accuracy by 

combining models [17]. Metadata and patient demographics 

improve melanoma classification. GANs create realistic 

dermoscopic images, boosting model accuracy [18]. Clear AI 

models increase transparency and trust in diagnostics [19]. 

Improved dataset documentation on Hugging Face is needed for 

better reproducibility and transparency [20-21]. Yang, Liang, 

and Zou [22] found exponential dataset growth and power-law 

distribution in downloads but noted gaps in documentation. 

 

 
FIGURE 3 COMPREHENSIVE ANALYSIS OF 24,065 

DATASETS ON HUGGING FACE, YANG ET AL, [22]. 

 

 
FIGURE 4. SECTION LENGTH AND POPULARITY IN 

DATASET DOCUMENTATION, [22]. 

 

Their analysis [22], shown in Figure 4b, reveals that 91.0% of 

the top 100 downloaded dataset cards are detailed, with over 

200 words. The Dataset Description and Dataset Structure 

sections are the most comprehensive, comprising 36.2% and 

33.6% of the documentation, respectively, while the section on 

data usage considerations is notably brief at 2.1%. Figure 4a 

indicates that highly downloaded datasets tend to have more 

extensive documentation, while less popular ones focus on the 

Additional Information section. This underscores the need for 

better documentation practices, especially for ethical 

considerations and usability. Deep Neural Networks (DNNs) 

use first-order (e.g., GD, Adam, NosAdam) and second-order 

optimization methods. First-order methods adjust learning rates 

based on gradient statistics but need tuning [23-24]. Adam 

improvements like Lookahead and SWATS enhance 

performance [25-26]. Second-order methods use the Hessian 

matrix for precise steps but are computationally intensive [27]. 

Enhanced Adam variants improve convergence and accuracy 

[28-29]. AAdam outperforms Adam and NAdam in reducing 

loss and achieving higher accuracy, despite higher memory use 

[32]. Ahmed et al. [33] show that Nadam, Adam, RMSProp, 

and Adamax achieve high accuracy, while AdaDelta, Adagrad, 

and SGD are less suitable for skin cancer detection. 

 

 
FIGURE 5. COMPARISON OF LOSS VALUE 

VARIATIONS: AADAM VS. ADAM AND NADAM, [32]. 

 

Figure 6 shows the loss validation curves over epochs for 

RMSProp, Nadam, AdaDelta, SGD, Adamax, Adagrad, Adam, 

and Adam-M. The first group (AdaDelta, Adagrad, SGD) has 

high loss validation, making them unsuitable for early skin 

cancer detection, while the second group [34-35] performs 

better with lower loss validation. Adam-M and Adam exhibit 

stable loss curves without overfitting. Using the HAM10000 

dermoscopy dataset, deep learning and transfer learning models 

were developed to process images without feature extraction or 

preprocessing. 

 

 
FIGURE 6. DEPENDENCE OF ACCURACY ON 

EPOCHS NUMBER FOR VARIOUS OPTIMIZERS, [33] 

  

Figure 7 shows training loss curves for RMSProp, Nadam, 

AdaDelta, SGD, Adamax, Adagrad, Adam, and Adam-M. Early 

skin cancer detection with dermoscopic images aids faster, cost-

effective diagnosis [32]. Nadam, Adam, Adam-M, RMSProp, 

and Adamax achieve high accuracy with more epochs, with 

customized Adam excelling in speed and accuracy. These 

findings underscore the importance of optimizers in deep 

learning for skin cancer classification. Tools like DUNEScan’s 

Grad-CAM, SkinVision, and IBM Watson's Dermatologist AI 

effectively detect skin abnormalities.  
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FIGURE 7. LOSS VALIDATION CURVES FOR VARIOUS 

OPTIMIZERS, [33] 

 

Table 3 highlights key studies on skin cancer detection. The 

highest accuracy (98.7%) was achieved in [41]. Other notable 

works include 95% accuracy [49] and 94.7% accuracy [47-63]. 

For the ISIC dataset, the best accuracy was 98.7% in 2023. 

Other studies include 92.5% and 95.62% accuracy. For the 

HAM10000 dataset, the best result was 95% accuracy [10]. 

Other studies reported 93.1% and 89.5% accuracy. The best 

overall result was 98.7% on the ISIC dataset using a multi-

modal approach with CNNs and a fusion attention module. 

The related works show significant progress in skin 

cancer detection using deep learning models like 

CNNs and transfer learning. Models such as VGG, 

Inception V3, and EfficientNet have achieved high 

accuracies (up to 98%) on datasets like ISIC. Data 

augmentation and advanced optimizers, like AAdam, 

have further improved model performance. 

However, limitations exist in dataset diversity, with 

many studies lacking representation of various skin 

tones, potentially reducing generalizability. 

Additionally, model interpretability remains a 

challenge, as many deep learning models are 

considered 'black boxes.' Despite high accuracy, 

clinical validation and real-world testing are still 

necessary for broader deployment. 

III. PROPOSED METHODOLOGY 

In this paper, we developed a novel dataset, incorporating 

newly curated images to improve skin cancer detection models. 

We also propose an enhanced optimizer framework to achieve 

the high-performance metrics. The new Mixed Dataset will be 

systematically compared to established benchmark datasets in 

medical image analysis, with a comprehensive evaluation of its 

efficacy. Our methodology includes refining an Enhanced 

Optimizer, rigorously tested on both the Mixed Dataset and 

other widely adopted optimizers to assess its generalization. A 

comparative analysis will identify the most effective optimizer-

dataset combinations, based on accuracy, sensitivity, 

specificity, and computational efficiency. Finally, the selected 

optimizer and dataset will be integrated into a web-based 

application for clinical use, aiming to improve skin cancer 

detection and advance medical image analysis. 

 

3.1 Mixed Dataset 

The need for new skin cancer datasets is significant due to the 

limitations of existing datasets, which often lack demographic 

diversity and are relatively small in size. This can hinder the 

adaptability of diagnostic models across different ethnicities 

and skin types. New datasets with broader demographics and 

larger image collections are essential for developing inclusive 

and accurate diagnostic tools.  

Technological advancements in imaging and the inclusion of 

comprehensive metadata, such as patient history and lesion 

progression, further underscore the need for updated datasets. 

To address these gaps, we created the "Mixed Dataset" 

combining skin cancer images sourced from Egyptian hospitals, 

with approval from the Egyptian Ministry of Health, and 

integrating them with images from the ISIC and DermNet 

datasets. This new dataset aims to enhance research, improve 

diagnostic precision, and ultimately advance dermatological 

practice. 

ISIC and DermNet datasets have limitations affecting skin 

cancer detection models. ISIC has class imbalance, poor image 

quality, inconsistent annotations, and limited darker skin tone 

representation, leading to biased training. DermNet is smaller, 

with similar quality issues and limited demographic diversity. 

Both lack comprehensive clinical context, reducing model 

reliability. Updating these datasets with balanced classes, 

diverse skin tones, and consistent annotations is crucial for 

better performance and fairness.The creation of the Mixed 

Dataset addresses the limitations of existing datasets like ISIC 

and HAM10000, which lack demographic diversity and have 

class imbalances. While ISIC and DermNet provide 2357 and 

4382 images respectively, they primarily represent specific 

populations, limiting model effectiveness across diverse skin 

types. To improve this, the Mixed Dataset includes 1443 images 

from Egyptian hospitals, bringing the total to 8062 images and 

enhancing representation for crucial classes, such as melanoma. 

By adding more diverse samples and including metadata like 

patient histories, the Mixed Dataset aims to train more 

inclusive, effective models for skin cancer detection, better 

suited for real-world clinical use. Table 4 details the number of 

photos for various skin lesion categories across ISIC, DermNet, 

and the Mixed Dataset. We collaborated with the Egyptian 

Ministry of Health to collect and photograph cases, adhering to 

ethical standards and patient privacy. These images were 

integrated with public datasets to enhance the diversity and 

accuracy of the Mixed Dataset, providing a valuable resource 

for improving skin cancer detection and diagnosis. 
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Table 3. Summary of Skin Cancer Research Studies.   

Year Name Objective Techniques Dataset Detection 

Accuracy 

Classificatio

n Accuracy 

Refere

nces 

2024 Skin Cancer Segmentation 

and Classification Using 

Vision Transformer 

Create a Vision Transformer 

model specifically designed for 

the purpose of segmenting and 

classifying skin cancer. 

Vision 

Transformer, 

deep learning 

ISIC 2020, 

HAM10000 

N/A 92.5% [36] 

2024 Leveraging Knowledge 

Distillation  

for Lightweight  

Skin Cancer Classification 

Balance accuracy and 

computational efficiency in skin 

cancer classification 

Knowledge 

distillation, 

machine 

learning 

ISIC 2020 N/A 90.2% [37] 

2024 Skin Cancer Recognition 

Using Unified Deep 

Convolutional Neural 

Networks 

Performance comparison of 

YOLO-based models for skin 

lesion classification 

YOLOv3, 

YOLOv4, 

YOLOv5, 

YOLOv7 

ISIC 2020 N/A 86.3% [38] 

2024 Skin Cancer Detection and 

Classification Using Neural 

Network Algorithms 

Assess efficacy of neural 

network algorithms for skin 

cancer detection 

Neural network 

algorithms 

 

ISIC, 

HAM10000 

91.20% 91.20% [39] 

2023 Artificial Intelligence for 

Skin Cancer Detection 

To categorize and classify the 

various AI-based technologies 

employed for the detection and 

categorization of skin cancer.  

Convolutional 

Neural 

Networks 

ISIC 2018 92.3% N/A [40] 

2023 Joint-Individual Fusion 

Structure with Fusion 

Attention Module for Multi-

Modal Skin Cancer 

Classification 

Develop a multi-modal skin 

cancer classification method 

CNN, fusion 

attention 

module 

ISIC 2020, 

HAM10000 

N/A 98.7% [41] 

2023 Application of Machine 

Learning in Melanoma 

Detection and the 

Identification of 'Ugly 

Duckling' and Suspicious 

Naevi: A Review 

Review machine learning 

applications in melanoma 

detection 

Machine 

Learning 

ISIC 2020 93.5% N/A [42] 

2023 Domain Shifts in 

Dermoscopic Skin Cancer 

Datasets: Evaluation of 

Essential Limitations for 

Clinical Translation 

Evaluate limitations of CNNs 

for clinical translation in skin 

cancer classification 

CNN, domain 

shifts evaluation 

 

ISIC, PH2 

N/A 89.7% [43] 

2023 Multi-class Skin Cancer 

Classification Architecture 

Based on Deep 

Convolutional Neural 

Network 

Develop and compare stacking 

models for skin cancer 

classification 

Deep CNN, 

stacking models 

ISIC 2018 N/A 87.9% [44] 

2023 CIFF-Net: Contextual Image 

Feature Fusion for 

Melanoma Diagnosis 

Improve melanoma diagnosis by 

integrating contextual 

information 

CIFF-Net, deep 

neural network 

ISIC 2019 N/A 88.6% [45] 

2023 Skin Cancer Detection Using 

Deep  

Learning Approach 

Review of skin cancer 

classification using deep 

learning methods 

Convolutional 

Neural 

Networks 

ISIC, 

HAM10000 

95.62% N/A [46] 

2022 Advanced Skin Cancer 

Detection Using Deep 

Learning 

Integration of FrCN and residual 

convolutional networks for skin 

lesion segmentation and 

classification 

FrCN, residual 

networks. 

ISIC 2018, 

HAM10000 

94.7% N/A [47] 

2022 A Comparative Analysis of 

Models with VGG-16, 

VGG-19, and Inception V3 

Comparison of VGG-16, VGG-

19, and Inception V3 models for 

skin lesion classification 

CNN models 

(VGG-16, VGG-

19, Inception V3) 

ISIC 2019 N/A  %92.7  [48] 
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2022 Detection of Skin Cancer 

using Artificial Intelligence 

& Machine Learning 

Concepts 

Use of CNNs and transfer 

learning for skin cancer detection 

CNNs, transfer 

learning 

ISIC 2018  %95  N/A [49] 

2022 Melanoma Mirage: 

Unmasking Skin Cancer with 

Deep Learning 

Automated skin cancer detection 

using CNNs 

CNNs ISIC 2020  %93.70  N/A [50] 

2022 Skin Lesions Detection via 

Convolutional Neural 

Networks 

Classification of melanoma from 

benign pigmented skin lesions 

using CNNs 

CNNs ISIC 2020 N/A  %89.5  [51] 

2022 Enhanced Skin Cancer 

Classification using Deep 

Learning and Nature-based 

Feature Optimization 

Combine deep learning and 

nature-based optimization for 

skin cancer classification 

CNN, fuzzy k-

means clustering 

ISIC 2020 N/A 93.1% [52] 

2022 Detection of Skin Cancer 

Based on Skin Lesion Images 

Using Deep Learning 

Detect skin cancer using deep 

learning on lesion images 

Deep Learning ISIC 2020 90.5% N/A [53] 

2022 Deep Learning Methods for 

Accurate Skin Cancer 

Recognition and Mobile 

Application 

Develop mobile application for 

skin cancer recognition using 

deep learning 

Deep Learning ISIC 2018 N/A 89.3% [54] 

2022 Classification of Skin Cancer 

Empowered with 

Convolutional Neural 

Network 

Classify skin cancer using CNNs CNN ISIC 2020 N/A N/A [55] 

2022 Skin Lesions Classification 

into Eight Classes for ISIC 

2019 Using Deep 

Convolutional Neural 

Network and Transfer 

Learning 

Classify skin lesions into eight 

classes using CNN and transfer 

learning 

CNN, Transfer 

Learning 

ISIC 2019 N/A N/A [56] 

2022 Analysis and Classification of 

Skin Cancer Based on Deep 

Learning Approach 

Use deep learning to analyze and 

classify skin cancer 

Deep Learning ISIC 2020 N/A N/A [57] 

2022 Deep Convolutional Neural 

Network (DCNN) for Skin 

Cancer Classification 

Use DCNN for early detection of 

skin cancer 

DCNN ISIC 2018 N/A N/A [58] 

2022 Enhanced Skin Cancer 

Classification using Efficient 

Net B0-B7 through a Tailored 

Preprocessing Pipeline 

Improve classification using 

EfficientNet B0-B7 and 

preprocessing 

EfficientNet B0-

B7, CNN 

ISIC 2020 N/A N/A [59] 

2022 Skin Cancer Detection and 

Classification Using Deep 

Learning 

Develop deep learning models 

for skin cancer detection and 

classification 

Deep Learning ISIC, 

HAM10000 

91.5% 91.5% [60] 

2022 Double AMIS-ensemble deep 

learning for skin cancer 

classification 

Develop a self-use classification 

system using a double-AMIS 

ensemble model 

Double-AMIS 

ensemble, deep 

learning 

ISIC 2019 N/A 90.9% [61] 

2022 Skin Cancer Detection and 

Classification Using Neural 

Network 

Use neural networks for skin 

cancer detection and 

classification 

Neural networks ISIC 2020 89.0% 89.0% [62] 
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Figure 8 presents one sample image per class from the ISIC 

dataset, illustrating the visual diversity across skin lesion types. 

This overview helps demonstrate the unique features the model 

needs to recognize for effective classification. 

 

 
FIGURE 8. IMAGES FROM ISIC DATASET. 

 

 
FIGURE 9. IMAGES FROM MIXED DATASET. 

  

 

 

 

Table 4. The MIXED Dataset. 

Figure 9 shows a diverse range of skin lesions from the Mixed 

dataset, integrating images from multiple sources for robust 

training. This dataset, used with HAM10000 and ISIC, assesses 

optimizer performance.  

Images are resized, normalized, and stratified to ensure a 

balanced, standardized dataset for effective model training and 

accurate predictions.  

Table 5 shows the study involves running two optimizers with 

three datasets. The table aims to inform the reader about the 

mechanism of comparing the performance of these optimizers 

across the datasets, helping to highlight the differences in 

results for each optimizer when applied to different datasets. 

 

TABLE 5. OPTIMIZERS TESTED ON VARIOUS SKIN 

CANCER DATASETS 

# Dataset Optimizer 

1 HAM10000 Adam 

2 HAM10000 Enhanced Optimizer 

3 ISIC Adam 

4 ISIC Enhanced Optimizer 

5 Mixed Dataset Adam 

6 Mixed Dataset Enhanced Optimizer 

Figure 10 shows the imbalance in a mixed dataset after splitting 

it into 70% training and 30% validation. This imbalance can 

negatively impact model performance. To address this, data 

augmentation was applied to increase samples in  

underrepresented classes, improving generalization. The 

training dataset initially had 5,640 images unevenly distributed 

across nine skin condition classes, with Seborrheic Keratosis 

being the largest class (21.046%) and Dermatofibroma the 

smallest (2.429%). Augmentation balanced the dataset, 

enhancing the model’s performance across all classes.  

  
 

FIGURE 10. VISUALIZATION OF CLASS 

IMBALANCE IN MIXED DATASETS AFTER 

TRAINING-VALIDATION SPLIT. 

Class Name ISIC Dermnet 

From 

Egyptian 

hospitals DS 

SUM 

actinic keratosis 130 1149 211 1490 

basal cell 

carcinoma 

392 29 15 436 

Dermatofibroma 111 103 18 196 

Melanoma 454 463 417 1334 

Nevus 373 101 422 896 

pigmented 

benign keratosis 

478 576 6 1060 

seborrheic 

keratosis 

80 1371 246 1697 

squamous cell 

carcinoma 

197 108 66 371 

vascular lesion 142 482 42 582 

Total 2357 4382 1443 8062 
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Figure 11 shows that image augmentation was used to address 

class imbalance in the training dataset. The Augmentor library 

expanded the dataset to ensure equal representation of each 

class, essential for developing a robust skin cancer detection 

model [65]. The model’s performance was assessed using the 

ISIC, HAM10000, and Mixed datasets with Adam and a 

custom-enhanced optimizer. The CNN, designed to classify 

nine skin conditions, featured five convolutional layers (32, 64, 

128, 256, 512 filters), ReLU activation, MaxPooling, and 

dropout layers (15-25%). A dense layer with 1024 units and a 

softmax output layer completed the model. Using Adam with a 

0.001 learning rate, the model’s validation accuracy improved 

from 60.43% to over 97% by the 32nd epoch, demonstrating its 

effectiveness. 

 

 
FIGURE 11. CLASS DISTRIBUTION BALANCE MIXED 

DATASETS AFTER DATA AUGMENTATION. 

 

Our CNN for skin cancer classification uses five convolutional 

layers (32, 64, 128, 256, 512 filters) with ReLU activation and 

MaxPooling. Dropout layers (15-25%) prevent overfitting. The 

final dense layer (1024 units) and softmax activation support 

multi-class classification. Using the Adam optimizer (learning 

rate 0.001), the model achieved over 97% validation accuracy 

by the 32nd epoch. Each parameter was validated to enhance 

suitability for skin cancer detection. 

 

3.2. A Comparison of Model Performance Using Adam and 

Enhanced Optimizers 

  

On the other hand, the model using enhanced optimizer which 

is a custom implementation designed to offer enhanced 

performance and fine-tuning capabilities. It is initialized with 

parameters including a learning rate of 1×10-3, beta values of 

0.9 and 0.999, epsilon for numerical stability at 1×10-8, and an 

option for AMSGrad. The optimizer creates slot variables for 

each trainable model parameter to track the first and second 

moments of the gradients and optionally the maximum of the 

second moments if AMSGrad is used. The gradient updates are 

applied using Tensor Flow’s operation, which ensures efficient 

and accurate weight adjustments. During training with the 

enhanced optimizer, the model initially had a training accuracy 

of 41.60% and validation accuracy of 61.03%, indicating 

underfitting. By epoch 5, the accuracy improved to 91.12% on 

training data and 91.79% on validation data. By epoch 10, 

training accuracy reached 97.66% and validation accuracy 

96.37%, showing strong generalization. From epochs 11 to 20, 

the model peaked at 98.85% training accuracy and 97.36% 

validation accuracy. Despite some fluctuation in validation loss 

between epochs 21 and 30, validation accuracy remained high, 

peaking at 97.50%. The enhanced optimizer effectively 

optimized the model, maintaining high accuracy and low loss, 

with early stopping helping to manage overfitting. The weight 

update rule with weight decay is given by: 

 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 ⋅ (
𝜕 𝐿

𝜕𝑤𝑡

+ 𝜆 𝑤𝑡)               (1) 

 

Where 𝑤𝑡  is the weight at time step t and 𝜂 is the learning rate. 

The gradient of the loss function with respect to the weight is 

represented by 
𝜕 𝐿

𝜕𝑤𝑡
 , 𝜆 represents the weight decay coefficient. 

The  𝜆 𝑤𝑡 added by the weight decay to shrink the weights. In 

the custom optimizer, weight decay is incorporated as a 

regularization mechanism to enhance model generalization and 

prevent overfitting. Weight decay, also known as L2 -

regularization, penalizes large weights by adding a term 

proportional to the squared magnitude of the weights to the loss 

function. Adam is renowned for its robustness, effectiveness in 

handling various gradient scales, and momentum-like behavior, 

which expedites convergence. It can be calculated by the 

exponential moving average of the gradient. Let m be the first 

moment vector which keeps a moving average of the gradients. 

Let v be the second moment vector, which keeps a moving 

average of the squared gradients. Let β₁ and β₂ are smoothing 

parameters used to control the decay rates of the moving 

averages. Typical values are β₁ = 0.9 and β₂ = 0.999. Update 

the moving averages of the gradients in equations (2) and (3): 

 

𝑚 =  𝛽1 𝑚 + (1 − 𝛽1) ∗ g    (2) 

𝑣 =  𝛽2 𝑣 + (1 − 𝛽2) g2,      (3) 

Bais – corrected moment estimates. 

�̅� = 𝑚/(1 − 𝛽1
𝑡)  and �̅� =

𝑣

1−𝛽2
𝑡 ,  (4) 

Update the model parameters in equation (5): 

𝜃𝑡+1 = 𝜃𝑡  − 𝛼 
�̅�

√�̅� + 𝜀
, (5) 

 

Where, 𝜃𝑡 represents the model parameters at time step t and 

𝜃𝑡+1 represents the updated model parameters at time step t +1 

of equation (5). This equation calculates the exponential 

moving average of the gradients. It maintains a record of the 

average gradient values throughout the training process. 

Adam's main advantage lies in its ability to dynamically modify 

the learning rate for each parameter by incorporating both first 

and second-moment estimates. This feature enables the Adam 

algorithm to effectively handle sparse gradients, noisy data, and 

parameters with varying scales. In the enhanced custom 

optimizer, the AMSGrad variant is incorporated to enhance the 

stability of the optimization process by addressing potential 

issues with the standard Adam optimizer. AMSGrad modifies 
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Adam's approach by maintaining a maximum of past squared 

gradients. AMSGrad is enabled by setting the AMSGrad 

parameter to True. The optimizer then uses the vhat variable to 

keep track of the maximum squared gradients and updates the 

weights accordingly. This adjustment helps to ensure more 

stable and reliable convergence compared to the original Adam 

optimizer. The enhancements in MyAdamOptimizer2 include 

the combination of weight decay and AMSGrad, which 

provides a more robust training process. Weight decay helps 

prevent overfitting by penalizing large weights, while 

AMSGrad ensures that the learning rate for each parameter 

remains stable, avoiding potential issues with convergence. 

Together, these modifications are likely to lead to better 

generalization and improved performance of the model across 

various datasets and tasks. We selected the standard Adam 

optimizer and an Enhanced Adam optimizer for our 

methodology. Adam is a top choice in deep learning due to its 

adaptive learning rate, which tailors individual learning rates 

for each parameter using first and second moments of gradients. 

With empirically validated hyperparameters (β₁ = 0.9, β₂ = 

0.999, and learning rate 0.001), Adam provides stability and 

efficiency, especially in noisy or complex tasks like skin cancer 

detection. However, to address Adam's limitations with noisy 

gradients, we developed the Enhanced Adam Optimizer. A 

small constant (ε = 1×10⁻⁸) ensures numerical stability during 

training, preventing issues with small or noisy gradients. A 

dropout rate of 15-25% prevents overfitting by randomly 

setting a fraction of the input units to zero during training, 

encouraging redundant representations. A batch size of 50 

ensures stable gradient updates and balances memory 

efficiency, affecting both training stability and the final 

accuracy of the model. This version dynamically adjusts the 

learning rate based on gradient variance, allowing for 

aggressive updates with consistent gradients and smaller 

updates when gradients are noisy. By combining these 

optimizers, we leverage Adam’s stability while refining 

performance through our enhancements, aiming for better 

accuracy and more stable training in skin cancer detection. 

Using the mixed dataset, we compared the Adam and enhanced 

optimizers for training a skin cancer detection model. Adam 

achieved 98.63% final accuracy and 97.26% validation 

accuracy. The enhanced optimizer reached 99.23% final 

accuracy and 97.50% validation accuracy, showing slightly 

better performance. This suggests the enhanced optimizer is 

more effective for this model and dataset. Testing accuracy is 

crucial for assessing real-world performance, distinct from 

training and validation. We updated our model to include a test 

evaluation phase, achieving 98.1% testing accuracy with the 

enhanced optimizer on HAM10000 (see Figure 12). A graph of 

test accuracy and loss highlights the model’s ability to 

generalize, addressing overfitting concerns and confirming 

robustness. 

 

Figure 12 shows the performance metrics of the proposed model using 

an enhanced optimizer on a mixed dataset. The dataset includes nine 

classes, such as Actinic Keratosis, Basal Cell Carcinoma, and 

Melanoma, with each class evaluated based on Precision, Recall, and 

F1-Score. The model demonstrates strong performance, with high 

precision and recall values, particularly for Vascular Lesion and 

Squamous Cell Carcinoma, where precision reaches a perfect score of 

1.00. The F1-Score consistently remains above 0.95, indicating a good 

balance between precision and recall. Summary metrics like Accuracy, 

Macro Avg, and Weighted Avg reflect an overall high model 

performance, achieving close to 98% accuracy. The weighted averages 

account for the class distribution, showing that the optimizer performs 

well across both major and minor classes. This highlights the optimizer’s 

effectiveness in handling complex, real-world medical image data. 

 

 
FIGURE 11. MODEL PERFORMANCE ON TEST DATA 

FOR ENHANCED OPTIMIZER ON HAM 10000 

DATASET 

 

We used an early stopping callback to prevent overfitting, 

halting training if validation loss stagnates for 10 epochs. With 

our enhanced optimizer on the mixed dataset, training and 

validation accuracies improved from 41.60% and 61.03% at 

epoch 1 to 98.85% and 97.36% by epoch 20. After early 

stopping, testing accuracy reached 98.93%, demonstrating the 

model’s robustness and generalization ability.  

3.3. Web-Based Software for Skin Cancer Detection  

Our web-based software for skin cancer detection is designed 

to offer a user-friendly and efficient solution for diagnosing 

skin cancer as in presented via URL " 

http://197.165.160.43:100/ ". It caters to both patients and 

clinical organizations, enabling them to easily scan and analyze 

images for potential skin cancer indications. The interface is 

intuitive, allowing users to navigate through the software 

without requiring extensive technical knowledge. A key feature 

of this software is its flexibility in integrating with various skin 

cancer detection models. It supports any model provided in the 

H5 file format, making it compatible with a range of detection 

algorithms. Among the models tested, our custom-enhanced 

optimizer developed specifically for this purpose demonstrated 

superior performance when applied to a mixed dataset. The 

results were encapsulated in an H5 file, which was then 

incorporated into our software. The integration of this 

optimized model into the software, alongside our dedicated 

Application Programming Interface (API), allowed for 

comprehensive comparative analysis and validation. This 

process confirmed the enhanced optimizer's capability to 

deliver highly accurate detection results. By leveraging our 

advanced model and technology, the software not only ensures 

http://197.165.160.43:100/
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high reliability in skin cancer detection, but also offers a robust 

adaptable tool for effective diagnostic support. Our web-based 

software uses encryption, access controls, and audits to protect 

patient data. Users log in with a username and password to scan 

skin images for cancer detection. Physicians can review and 

compare the model’s results with their own assessments, 

enhancing accuracy. User interaction logs ensure data integrity 

and security. Figure 13 demonstrates this feature. 

 

 
FIGURE 13. WEB SYSTEM ANALYSIS AND RESULTS 

COMPARISON WITH PHYSICIAN INPUTS. 

 

Figure 14 shows the web-based skin cancer detection system 

architecture. It features an SQL Server database, an MS .NET 

interface for user interaction, and a Python API connecting to 

the Python model for analysis. Users upload images via the 

.NET interface, which are processed by the Python model, 

returning accurate detection results and recommendations. 

 

 
FIGURE 14. WEB BASED SKIN CANCER DETECTOR 

WEB BASED SYSTEM ARCITETURE. 

 

Figure 15 illustrates the integration of a deep learning system 

with Electronic Health Records (EHRs), enhancing clinical 

workflows and patient care. This system ensures GDPR and 

HIPAA compliance through encryption, access controls, and 

audits. It undergoes rigorous validation and real-world trials to 

assess its diagnostic accuracy and clinical effectiveness. 

Comprehensive training and support are provided for healthcare 

professionals, along with patient educational resources. The 

system distinguishes between end users and admin users and is 

supported by a relational database managing the skin cancer 

detection process. Key tables include classifications, body 

parts, entities, scan methods, models, scans, and user accounts. 

We have implemented multiple security measures to safeguard 

patient data. Database encryption using Advanced Encryption 

Standard (AES) protects sensitive data at rest. An audit 

mechanism tracks all transactions, with changes preserved in 

audit tables to ensure data integrity. Additionally, a role-based 

access control system restricts user access according to their 

roles, preventing unauthorized access to sensitive information. 

Together, these measures enhance the application's security and 

protect patient confidentiality.  

 

 
FIGURE 15. SKIN CANCER DETECTOR WEB BASED 

SYSTEM ENTITY-RELATIONSHIP DIAGRAM (ERD).  

 

 
FIGURE 16. SKIN CANCER DETECTOR WEB BASED 

SYSTEM INTERFACE. 

 

IV. RESULTS AND DISCUSSIONS 

The creation of a new skin cancer dataset that incorporates both 

existing data and new images from Egyptian hospitals marks a 

significant contribution to the global fight against skin cancer. 

By integrating local data into the dataset, the mixed dataset 

improves its diversity to handle diverse demographics, resulting 

in enhanced accuracy and relevance of machine learning 

models for early cancer detection. This dataset not only bolsters 



Menoufia Journal of Electronic Engineering Research (MJEER), VOL. 34, NO. 1, January 2025 

 

36 

 

Egypt’s scientific standing, but also provides valuable 

resources for researchers and medical professionals worldwide. 

It enables the development of more effective diagnostic tools, 

particularly for populations with similar demographic and 

environmental factors. Ultimately, this work contributes to 

better patient outcomes and advances the global effort to 

combat skin cancer. The experiments were conducted using a 

high-performance computing platform with an NVIDIA GPU. 

Python 3.8, TensorFlow 2.7, and Keras 2.7 were used for model 

development, with additional libraries like NumPy and 

Matplotlib for data handling and visualization. Key components 

include data preprocessing (augmentation, resizing, and 

normalization), CNN architecture, and training scripts. Adam 

and an enhanced optimizer were used, and models were saved 

in .h5 format for evaluation and future use. 

We tested six models using Adam and an enhanced optimizer 

across three datasets: HAM10000, ISIC, and Mixed. By 

comparing accuracy and loss for each combination, we aim to 

identify the most effective ptimizer for each dataset, ensuring 

optimal results in skin cancer detection. Figure 17 compares the 

Adam and enhanced optimizers on the HAM10000 dataset. 

Figure 17(a) and 17(b) show Adam’s performance with 97.90% 

accuracy and 0.219 loss. Figure 17(c) and 17(d) highlight the 

enhanced optimizer’s superior performance, achieving 97.95% 

accuracy and 0.165 loss. These results indicate the enhanced 

optimizer is more effective, providing higher accuracy and 

reliability for skin cancer classification. 

 

 
FIGURE 17. PERFORMANCE COMPARISON ON 

HAM10000 DATASET: ADAM VS. ENHANCED 

OPTIMIZER (ACCURACY AND LOSS).  

 

Figure 18 compares Adam and enhanced optimizers on the ISIC 

dataset. Adam achieves 93.96% accuracy and 0.218 loss (Parts 

a and b). The enhanced optimizer shows 92.48% accuracy and 

0.249 loss (Parts c and d), indicating Adam performs better on 

this dataset. This suggests Adam is more suitable for the ISIC 

dataset, unlike the HAM10000 dataset where the enhanced 

optimizer excels. 

 

 
FIGURE 18. PERFORMANCE COMPARISON ON ISIC 

DATASET: ADAM VS. ENHANCED OPTIMIZER 

(ACCURACY AND LOSS). 

 

Figure 19. compares Adam and enhanced optimizers on the 

Mixed Dataset, with Part (a) showing Adam’s accuracy at 

97.02% and Part (b) its loss at 0.096. The enhanced optimizer, 

shown in Parts (c) and (d), achieves 98.93% accuracy and a 

much lower loss of 0.032, highlighting a notable improvement 

over Adam. 

Table 6. Adam and Enhanced Optimizer Performance 

Comparison Across HAM10000, ISIC, and Mixed Datasets 

 These results indicate that the enhanced optimizer offers 

superior accuracy and reliability for the Mixed Dataset. 

 

 
FIGURE 19. PERFORMANCE COMPARISON ON 

MIXED DATASET: ADAM VS. ENHANCED 

OPTIMIZER (ACCURACY AND LOSS). 

 

Table 6 compares the Adam and enhanced optimizers across 

three datasets: HAM10000, ISIC, and Mixed. The enhanced 

optimizer achieves higher accuracy and lower loss on the 

HAM10000 (97.95%, 0.165) and Mixed datasets (98.93%, 

0.032). Adam performs better on the ISIC dataset with 93.96% 
accuracy and 0.218 loss. Overall, the enhanced optimizer 

generally outperforms Adam, except on the ISIC dataset. The 
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proposed enhanced algorithm's training time with the mixed dataset was 

evaluated, with the first epoch taking 945 seconds and subsequent 

epochs 

 averaging 530–685 seconds. Total training time for 34 epochs was 

approximately 8 hours and 47 minutes. 

 

TABLE 6. ADAM AND ENHANCED OPTIMIZER 

PERFORMANCE COMPARISON ACROSS HAM10000, 

ISIC, AND MIXED DATASETS 

 In summary, using HAM10000 dataset, our model achieves 

97.90% accuracy with Adam and 97.95% with the enhanced 

optimizer in comparison with [66], which achieved 91.20%. For 

the ISIC dataset, our model reaches 93.96% accuracy with 

Adam and 92.48% with the enhanced optimizer, in comparison 

with [67] which achieved 98.7%. On the Mixed Dataset, our 

model achieves 97.02% accuracy with Adam and 98.93% with 

the enhanced optimizer, in comparison with [68] which 

achieved 86.3%. Statistical analyses were performed to ensure 

robust results, with controls implemented to address class 

imbalance through data augmentation techniques like rotation 

and zooming. A balanced sampling mechanism was used, 

incorporating both public datasets and new images from 

Egyptian hospitals to improve diversity. Performance was 

reported using multiple metrics, including accuracy, precision, 

recall, and F1-score, ensuring comprehensive evaluation. The 

study's limitations include potential dataset biases, as the model 

was trained on specific datasets that may not fully represent all 

skin cancer types. Additionally, challenges remain in accurately 

classifying less common skin cancer types. The model's 

performance could also be influenced by variations in image 

quality.  

 

V. CONCLUSION 

The development of a deep learning system (DLS) for 

diagnosing skin cancer from smartphone photos shows great 

promise for early detection. This study successfully applied 

convolutional neural networks (CNNs) to classify skin cancer 

types, addressing challenges related to dataset limitations and 

real-world applicability. Using diverse datasets like 

HAM10000, ISIC, and Egyptian hospital data, along with data 

augmentation techniques, the model’s robustness was 

significantly improved.  

The CNN architecture used convolutional, pooling, and fully 

connected layers with Rectified Linear Unit (ReLU) activation. 

The model, evaluated through accuracy, precision, recall, and 

F1-score, demonstrated potential for patient self-monitoring 

and early diagnosis but faced limitations like dataset biases and 

classification challenges. The enhanced optimizer achieved 

97.95% accuracy, highlighting the model's potential for early 

detection, though challenges like dataset biases and 

classification complexities remain. 
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