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 

Abstract—The oscillations of a cantilever beam with transversely 

energized free under external and parametric excitation forces 

are studied. When this kind of excitation occurs, external and 

parametric forces manifest, leading to the intensification of 

undesired nonlinear oscillations of the beam, especially in 

resonant states. The nonlinear differential equation that 

describes the cantilever beam’s vibrations can be approximately 

solved analytically and numerically. To reduce these vibrations, 

the Nonlinear Saturation Controller (NSC) algorithm is applied 

using a piezoelectric (PZT) actuator. The PZT actuator is placed 

throughout the beam’s surface to overcome the primary 

resonance case. Furthermore, the multiple time scales 

perturbation method is applied to visualize the overall properties 

of the beam so that the effectiveness of the controller can be 

assessed. Moreover, the Routh-Hurwitz criterion and Lyapunov's 

first (indirect) technique are used to verify the stability of the 

steady-state oscillation amplitude and phase. The cantilever beam 

bifurcation analysis is presented before and after control, 

allowing for a comparison of the beam's behavior. Time 

responses and phase portraits have been used to perform 

numerical verifications that validate the implemented control 

method. 

Keywords—Cantilever beam; bifurcation; simultaneous resonance; 

nonlinear saturation controller; phase plane. 

I. INTRODUCTION 

n dynamical problems of a beam carrying a concentrated 

mass at its end or middle may arise. The free vibration 

characteristics of a uniform or non-uniform beam carrying 

various concentrated elements are an important problem in 

this field. Thus, a lot of studies have been published in this 
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area [1-3]. Pratiher and Dwivedy [4] investigated and studied 

the nonlinear vibration of a cantilever beam with an end mass 

subjected to an axial force and a periodically shifting magnetic 

field. The perturbation method is used to solve the system's 

equation of motion of this cantilever beam that contains both 

linear and nonlinear parametric excitation terms. The stability 

and bifurcation at three various resonance cases were 

investigated and studied numerically. Sadri et al. [5] studied 

vibrations due to nonlinear motion of forced cantilever beam 

carrying a midway lumped mass and derived the nonlinear 

governing equation of the vibrating beam using Euler–

Lagrange method. An approximate solution for this problem is 

obtained using perturbation technique and the stability of each 

frequency-response curves near the deduced resonance cases 

are determined numerically. They found frequency response 

of the cantilever beam is strongly affected by damping and 

excitation level and by changing the parameters values of the 

model the transition from the periodic solution to chaos 

occurred for the mechanical system. Also, Kumar [6] 

investigated the nonlinear dynamic behavior of cantilever 

beam response experimentally and numerically under 

transverse harmonic excitation. The effects of approximation 

of curvature/inertia nonlinearities and transverse displacement 

on the nonlinear periodic response of the cantilever beam are 

obtained. The free vibration and stability analysis of a 

cantilever beam that was intermittently attached to a tendon 

and subjected to axial loading are investigated and studied by 

Ondra and Titurus [7]. The experimental model was developed 

and tested theoretically with respect to its frequency loading 

techniques. It has been observed that the system provided 

frequency reduction for beam-dominated modes and string 

position skew, which depended on the number and placement 

of the beam attachment points. In addition, Zhang [8] 

investigated the non-planar chaotic vibrations of a cantilever 

beam under the influence of a combination of transverse and 

axial excitations using perturbation techniques, Galerkin’s 

method, and normal form theory. The effects of important 

parameters on the stability limits were demonstrated 

numerically. Sayed et al. [9] studied multiscale turbulence and 

its numerical solution Vibration analysis and control system 

simulates the vibrations of a Nonlinear compound beam 

model. The controller is applied to control one Frequency at 

primary and parametric resonance where mechanical damage 

occurs the system is possible. Active control is applied to the 

system. Multiple metrics the perturbation technique (MSP) is 

utilized to achieve an estimated analysis solution. Frequency 

response (FR) is used to provide system stability analysis. 

Within a variety of bifurcation parameter ranges, the system's 

dynamic behavior is anticipated. The bifurcation analysis 

efficiently identifies all stable steady state (point attractor), 
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periodic stable attractors, unstable steady state, and periodic 

unstable attractors. Omara et al. [10] investigated nonlinear 

vibration control of a horizontally supported rotor system, 

which is governed by two coupled second-order differential 

equations containing quadratic and cubic nonlinearities. The 

system is based on the proposed control strategy and the entire 

system, and the results obtained showed that the proposed 

control method can mitigate unwanted rotor vibrations near 

zero regardless of the amplitude. Additionally, an 8-pole 

active magnetic bearing is used as the active actuator through 

which the control signal will be applied to the rotor. 

 

Micro-electromechanical systems (MEMS) are devices and 

technologies that have evolved from the microelectronics 

industry. MEMS resonators composed mainly of micro beams 

are the main building block of many MEMS sensors and 

actuators that are used in variety of applications such as mass 

sensors, temperature sensors, force and acceleration sensors. 

These MEMS resonators are excited using different types of 

forces, such as piezoelectric, thermal and electrostatic [11-14]. 

Przybylski and Gasiorski [15] studied the theoretical and 

experimental investigations into nonlinear flexural vibrations 

of a structure composed of a host beam with piezoelectric 

ceramic actuators symmetrically bonded to its top and bottom 

surfaces. The analytical model for describing flexural 

vibration of a beam under both the external load and 

piezoelectric actuation is based on the Euler–Bernoulli beam. 

They created a prestressed which can stabilize the structure 

when the external compressive force appears by applying 

voltage to piezoelectric actuators. The solution of the beam 

system is obtained by applying Lindstedt-Poincare 

perturbation method. Latalski and Warminski [16] analyzed 

and studied a revolving structure made up of a hub and a 

laminate cantilever beam with embedded nonlinear 

piezoelectric layers and thin walls. The author proposed a 

nonlinear analytical model of a piezoelectric material 

embedded onto beam walls, which is represented by mutually 

coupled nonlinear equations of motion, using higher-order 

constitutive relations with regard to the electric field variable. 

Plots of the appropriate frequency response and bifurcation 

diagrams are used to illustrate the effects of hub inertia, 

excitation amplitude, and mean rotating speed on system 

dynamics. Finally Ebrahimi et al. [17] investigated and studied 

a nonlinear dynamical modeling of smart 

graphene/piezoelectric composite nanoplates subjected to dual 

frequency excitation. The multiple time scales method is 

applied to solve nonlinear problem and to study the 

modulation equation under sub-harmonic and super-harmonic 

stimulation. The obtained results showed that dual frequency 

excitation can intensify the nonlinear frequency response and 

the electric voltage as well as external excitation plays an 

important role in resonance phenomenon. 

 

Moreover, many authors studied different vibration controls to 

suppress the vibration of the structure beams [18-23]. For 

cantilever beams the favorite controllers such as: velocity 

feedback control, nonlinear saturation controller (NSC), time-

delay feedback control and positive position feedback control are 

appropriate to eliminate system vibration and enhance the 

bandwidth of the amplitude beam. Liu et al. [24] investigated 

and studied a suspended arm beam carrying a lumped mass 

under a harmonic excitation force. The authors applied the 

perturbation technique to derive the frequency equations and 

studied the stability of the vibration system near the 

fundamental, superharmonic and subharmonic resonance 

states. They also applied time delay feedback controller to 

enhance the stability and suppress the nonlinear vibration of 

the dynamical system. Also, Hamed et al. [25], studied the 

nonlinear vibrations of a cantilever beam system carrying an 

intermediate lumped mass. They applied multi scale method to 

obtain an approximate solution of the vibrating system and to 

derive the response of amplitudes and phases to study the 

stability of the vibration system near the worst resonance case 

and to study bifurcation of the oscillating system. Finally, the 

suppression of vibrating system is obtained when the modified 

positive position feedback (MPPF) approach is applied and 

they found the optimized choice of control parameters can be 

useful in controlling vibrations. Finally, Amer et al. [26] 

studied how to suppress the vibrations of a cantilever beam 

excited by an external force using four different types of 

controllers, namely linear velocity feedback controller, cubic 

velocity feedback controller, nonlinear saturation controller, 

and positive local feedback controller. They applied the multi 

scale perturbation method to obtain the approximate solution 

of the beam equation and derived the response of amplitudes 

and phases equations to investigate the stability of the 

vibrating beam near the worst case resonance. The researchers 

found that the positive local feedback controller is a suitable 

controller for suppressing the vibrations of a cantilever beam. 

 

This study presents a model of a nonlinear cantilever beam 

under the influence of external and parametric stimulating 

forces. A nonlinear saturation controller (NSC) is applied to 

suppress the resulting nonlinear vibrations. The multi scale 

method [27,28] is applied to derive the frequency response 

equations and obtain the approximate analytical solution of the 

oscillating system. In addition, the stability of the equilibrium 

solutions near the synchronous intrinsic and fundamental 

resonance condition is investigated and evaluated. The 

approximate numerical solution is obtained using numerical 

integration through the Rung-Kutta technique. In addition, the 

effects of changing all the parameters on the frequency 

response curves of the oscillating beam are investigated. 

Finally, some tips regarding the applied control technique are 

provided, along with a summary of its advantages and 

limitations. 

II. MATHEMATICAL ANALYSIS ON THE CANTILEVER 

BEAM’S MOTION 

        The schematic diagram of the cantilever beam is 

displayed in Figure (1). The governing equation of motion of 

the vibrating beam system was studied before in Ref [8]. 

Utilizing an NSC algorithm, it can be coupled to the beam’s 

equation of motion to have the following 
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(3) 

Under coupled parametric and driving excitations, we 

construct a two-degree-of-freedom nonlinear system in the 

following analysis by using the Galerkin approach to 

Equation (1). For the cantilever beam, the planar flexural 

mode is regarded as 
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where the position 𝑠 denotes the curve coordinate along the 

elastic axis before deformation and the function 𝐺(𝑠) 

denotes the linear mode of transverse free vibration. It takes 

the following form 
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The following ordinary differential equation is satisfied by 

the linear mode 𝐺(𝑠) 
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Under coupled parametric and driving excitations, a 

nonlinear system with two degrees of freedom is formed as 
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where the dot denotes the differentiation w.r.t. 𝜏̃ = 𝑟2𝑡, and 
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Appropriate scaled parameters for using the multiple scales 

approach are introduced as follows 
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where 0 < 𝜀 ≪ 1 is a small perturbation parameter. In 

addition, 𝛽𝑦 and 𝛽𝑐 can be replaced by 𝜔2 and 𝜔𝑐
2 in the 

next stage of analysis. Inserting Equation (14) into (11) and 

(12) yields 
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Figure 1. (a) Cantilever beam with piezoelectric configuration, (b) the controlled cantilever beam block diagram. 

The multiple scales approach [27, 28] is utilized to seek a 

first-order uniform solution to equations (15) and (16) as 
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The worst resonance case that was deduced form Equations 

(23), is the simultaneous resonance (2 = , c= ). By using 

the detuning parameters 𝜎1 and 𝜎2, the proximity of the 

simultaneous resonance can be quantitatively defined as 

2 1      and    22 c     (23) 

Substituting Equations (23) into Equations (22), then 

eliminating the secular terms for 𝑦 and 𝑣 solutions in order to 

get the following solvability conditions 

1 1

2 1

T2 2 2 2 1
2 3

2
1 1

2 2 3
2

0

i

i T

f
i A ci A A A A A e

A e





     



    

 

 

(24.a) 
2 1

1 1 2 12 0i T

c ci A i A AA e          (24.b) 

It is convenient to express A(T1) and A1(T1) in the complex 

polar form as 

11

2

iba
A e  and  22

1
2

iba
A e  (25) 

where 𝑎1, 𝑎2, 𝑏1 and 𝑏2 are real functions of 𝑇1. By inserting 

Equations (25) into (24), the following can be gained where 

the real functions of 𝑇1 are 𝑎1, 𝑎2, 𝑏1 and 𝑏2. Equation (25) 

can be inserted into (24), yielding the following results. 

1 1 1 2 1 1 2

2 3 2 3
1 1 1 1 2 1 3 1

2
( ) ( 2 )1 2

1

1 1 3

2 4 8

0
2 4

i T b i T b b

i a a b ci a a a

f a
e e 

      

  

     

  

 (26) 

1 2 2 1( 2 )2 1 2
2 2 2 2 0

2 4

i b b T

c c c

a a a
i a a b i e              (27) 

Separating real and imaginary parts from Equations (26) and 

(27), we have 

2
1 2

1 1 1 1 2

1
sin sin

2 2 4

f a
a ca   

 
      (28.a) 

3 3 1
1 1 2 1 3 1 1

2
2

1 2

1 3
cos

4 8 2

cos
4

f
a b a a

a

    


 


    



 (28.b) 

2 1 2
2 2 2sin

2 4 c

a a a
a   


     (28.c) 

1 2
2 2 2 2cos

4 c

a a
a b  


    (28.d) 

Where 1 1 1 1( T )b    and  2 1 2 1 2( T 2 )b b     (29) 

Substituting the 𝑇1-derivatives of Equations (29) into (28) 

gives a modified autonomous system of differential equations 
2

1 2
1 1 1 1 2

1
sin sin

2 2 4

f a
a ca   

 
      (30.a) 

2 2 1
1 1 2 1 3 1 1

1

2
2

1 2

1

1 3
cos

4 8 2

cos
4

f
a a

a

a

a

      


 


    



 (30.b) 

2 1 2
2 2 2sin

2 4 c

a a a
a   


     (30.c) 

2 21
2 2 2 2 2 1 3 1

2
1 2

1 1 2

1 1

1 3
cos

2 4 8

cos cos
2 4

c

a
a a

f a

a a

       


  
 

    

 

 (30.d) 

The above equations govern the fluctuations in the beam’s 

motion amplitude and phase that characterize its output 

response. 

III. STABILITY TEST VIA JACOBIAN MATRIX AND 

ROUTH-HURWITZ CRITERION 

     For the steady state solutions we have 1 2 1 2 0a a         , 

and Equations (30) become in the form: 

21
1 1 1 2

2 1

1
sin

2 2 2
cf

ca a
a


  

 
   (31.a) 

3 31
1 1 1 2 1 3 1

2 2
1 2 2 1 2 1

1 2 1 2

1 3
cos

2 4 8

2 2
c c

f
a a a

a a
a a

     


 
   

   

   

 

 

(31.b) 

1
2 2

1
sin

4 2c

a
  


   (31.c) 

1 2 1
2 2cos

4 2 2c

a  
 


   (31.d) 

The beam’s and controller’s frequency response equations can 

be derived from Equations (31) which takes the following 

form: 
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2 3 3 21
1 1 2 1 3 1 1 2 2

1 2

2 2 2 2
1 2 1 1 1 2

1 2 2 1

1 3
( ) (

2 4 8 2

1
) ( )

2 2 2

c

c c

f
a a a a

a

a ca a
a a


      

  

 
   

  

    

  

 

(32) 

2 2 21 2
2 1

1 1
( ) ( ) ( )

4 2 2 2c

a
 

 


     (33) 

A Jacobian matrix is derived from Equations (30) to assess the 

stability of the steady-state solutions using the resultant 

matrix's eigenvalues. This can be done by letting that 

  𝑎𝑛 = 𝑎𝑛0 + 𝑎𝑛1 and 𝜙𝑛 = 𝜙𝑛0 + 𝜙𝑛1   (34) 

where 𝑎𝑛0 and  𝜙𝑛0 satisfy Eqs. (31), while  𝑎𝑛1 and 𝜙𝑛1 are 

small-valued quantities compared to 𝑎𝑛0 and𝜙𝑛0. Substituting 

Equations (34) into (31) with linearizing the terms containing  

𝑎𝑛1 and 𝜙𝑛1 lead to 

 

11 11

11 11

21 21

2121

a a

J
a a

 



   
   
   
   
   
     

 (35) 

where 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

u u u u

u u u u
J

u u u u

u u u u

 
 
 

  
 
 
 

 and its entries are given in the 

Appendix. The Jacobian matrix’s characteristic equation is 

4 3 2
1 2 3 4 0q q q q         (36) 

where q  denotes the eigenvalue and 𝛿1, 𝛿2, 𝛿3, 𝛿4 are given in 

the Appendix. Accordingly, if all the real parts of 𝑞 are 

negative, then the steady-state solution is stable. Otherwise, it 

is unstable. In addition, the necessary and sufficient criteria, 

according to Ruth-Hurwitz criterion, for all the roots in 

Equation (36), to have negative real parts are 

1  0, 12 – 3  0, 3 (12 – 3) – 1
2 4  0, 4  0 (37) 

 

IV. GRAPHICAL ANALYSIS ON THE CANTILEVER 

BEAM’S MOTION 

     In this section, the selected values for the beam and 

controller parameters are chosen as: 𝜔 = 0.5, 𝜎2 = 0, 𝛼1 =
−0.0694, 𝛼2 = 4.5967, 𝛼3 = 3.2712, 𝜔𝑐 = 0.25, 𝛾 = 0.1, 

𝑐 = 0.011, 𝐹 = −0.001, 𝐹̅ = 0.1, Ω1 = 0.5, unless otherwise 

stated. The relationship between the cantilever beam's 

amplitude of response 𝑎 and the detuning value 𝜎1 before and 

after NSC control is illustrated by the graphical curves from 2 

to 4. The stable solutions are shown by black lines on these 

curves, whereas the unstable solutions are represented by light 

lines. The frequency-response curves of the controller and the 

primary system with different stimulating forces 𝑓1 are 

displayed in Figure (2). 

In Figure (2a), the steady-state amplitude of the main system 

is a function that grows monotonically based on the amplitude 

of the excitation force. The jump phenomenon appears 

because of the dominance of the nonlinearity, and the curve is 

bent to the right as the force amplitude increases, denoting a 

hardening effect. The equilibrium amplitudes of the beam and 

NSC, in Figures (2b) and (2c), are directly proportional to the 

exciting force amplitude 𝑓1. When  𝑓1 = 0.001, the amplitude 

is stable Through the interval −0.07 < 𝜎1 < 0.07. NSC is 

approximately between the two values 𝜎1 = ±0.07, and the 

beam’s steady-state amplitude is at its lowest level at 𝜎1 = 0. 

Also, the jump phenomena appear obviously for the NSC and 

the beam as depicted by the curve

 

 

 

 

 

 

 

 

 

 

 

 



Menoufia Journal of Electronic Engineering Research (MJEER), VOL 34, NO. 1, 2025 

 

7 

 
(a)                                                                                              (b) 

 

    (c) 

Figure 2. Frequency-response curves pre and post NSC control: (a) beam’s amplitude pre-control, (b) beam’s amplitude 

post-control, (c) NSC’s amplitude. 

     Figure (3) displays the frequency-response curves of the 

beam after NSC with different gain parameters 𝛾1 = 𝛾2. In 

Figure (3a) and (3b), when gain increased, the bandwidth 

increased, the amplitude decreased and nears to zero so this 

controller is suitable for this beam. When the vibration 

amplitude decreases, the system is more stable. 

     Figure (4) displays the frequency-response curves of the 

beam after NSC with different 𝜇 parameter at 𝛾1 = 𝛾2 =
0.1 and 𝑓1 = 0.005. In Figure (4a), when 𝜇 decreased, the 

bandwidth increased and the amplitude decreased and nears to 

zero. 

  

 
(a)                                                                                           (b) 

Figure 3. Frequency-response curves after NSC control at 𝑓1 = 0.005, 𝜇 = 0.001: (a) beam’s amplitude pre-control, (b) NSC’s 

amplitude. 
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(a)                                                                                        (b)     

Figure 4. Frequency-response curves after NSC control at 𝑓1 = 0.005, 𝛾1 = 𝛾2 = 0.1: (a) beam’s amplitude with control, (b) 

NSC’s amplitude. 

 

     Figure (5) depicts the force response curve, which 

illustrates the relationship between force and amplitude before 

and after NSC control 𝜇 = 0.001, 𝛾1 = 𝛾2 = 0.1with varying 

detuning parameters. When force increases in Fig. 5a at 𝜎1 =

0, the amplitude also increases and becomes more unstable. 

There are jump phenomena in this curve. The beam is more 

steady when we apply the saturation control shown in Figure 

(5b). It is preferable to use a cantilever beam system when the 

detuning parameter is equal to zero, which results in zero 

beam amplitude. 

 
(a)                                                                                             (b) 

 
                           (c) 

Fig. 5 Force-response curves pre and post NSC control: (a) beam’s amplitude pre-control, (b) beam’s amplitude post-control, (c) 

NSC’s amplitude. 
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     Time history of the equilibrium amplitude of the 

uncontrolled and controlled beam near the simultanous 

resonance case Ω = 𝜔 + 𝜎1 and 2𝜔𝑐 = 𝜔 + 𝜎2 are 

numerically simulated as shown in  Figures (6) to (7) 

using ODE45 tool in the MATLAB software. At 𝑓1 =
0.005 and (𝜎1 = 𝜎2 = 0) according to Figure (6a), the 

 beam’s uncontrolled amplitude is approximately 0.347, 

while the controlled beam’s amplitude is around 0.035. 

According to the phase portraits of Figures (6b) and (6d), 

the uncontrolled beam, the controlled beam, and the NSC 

all have stable steady-state amplitudes. 

 
                                     (a)                                         (b) 

 
                                                       (c)                                       (d) 

Fig. 6 The cantilever beam’s time-vibrations before and after control for 𝑓1 = 0.003: (a) the beam’s time response and  phase 

plane before control; (b) the beam’s time response and phase plane after control; (c, d) time reponse and phase plane of 

the NSC. 

 

     At 𝑓1 = 0.004 and (𝜎1 = 0.01, 𝜎2 = 0) according to Figure 

(7a), the uncontrolled beam has an  unstable amplitude 

becouse time increases, the amplitude of beam becames 

unstable, whereas the controlled beam has an amplitude that 

tends to about zero and is approximately 0.068.  

 

 

 

 

 

 

 

According to the phase plane of Figures (7b), and (7d), the 

steady-state amplitude of the NSC is stable and amplitude of 

beam is unstable. 
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                                    (a)                                            (b) 

 

                                      (c)                                                (d) 

Fig. 7 The cantilever beam’s time-vibrations before and after control for 𝑓1 = 0.004:(a) the beam’s time response and phase 

plane before control; (b) the beam’s time response and phase plane after control; (c, d) time response and phase plane of 

the NSC.

V. CONCLUSION 

In this paper, the nonlinear oscillations of a parametrically 

excited dynamical cantilever beam were analyzed and 

controlled. Within this model, we implemented NSC 

algorithm and retrieved the equation's analysis before and after 

control. There were multiple responses that demonstrated the 

dynamic behavior under control. Ultimately, we made a 

comparison between the numerical and analytical results 

obtained before and after control. The following points can be 

used to summarize these findings: 

1. The cantilever beam was suffering from high-amplitude 

vibrations and jump phenomena in some conditions. 

2. After control, the beam’s vibrations reached the lowest 

level at 𝜎1 = 0 and quite lower levels within the range 

𝜎1 ∈ [−0.03,0.03]. 

3. To increase the bandwidth of small amplitudes, the 

control gain was raised for enhancing this purpose. 

4. Reducing the controller’s damping 𝜇 could help in 

keeping the beam’s vibrations at its minimum level when 

𝜎1 = 0. 

5. The beam’s vibration amplitude was saturated at specific 

values even if the external force amplitude increased. 

APPENDIX 

The entries of the Jacobian matrix 𝐽 in Equation (35): 

11

1

2
u c   

1
12 1cos

2

f
u 


  

2
13 1 2sin

2

a
u  


  



Menoufia Journal of Electronic Engineering Research (MJEER), VOL 34, NO. 1, 2025 

 

11 

2
2

14 1 2cos
4

a
u  


 , 

1
21 2 1 3 1 12

1

2
2

1 22
1

1 3
cos

2 4 2

cos
4

f
u a a

a

a

a

    


 


  



 

1
22 1

1

sin
2

f
u

a



   

2
23 1 2

1

cos
2

a
u

a
 


  

2
2

24 1 2

1

sin
4

a
u

a
 


   

2
31 2 2sin

4 c

a
u  


   

32 0u   

1
33 2 2

1
sin

2 4 c

a
u   


    

1 2
34 2 2cos

4 c

a a
u  


   

The coefficients of Equation (36): 

1 11 22 33 44u u u u       

2 12 21 11 22 33 11 11 44 33 22

44 22 34 43 42 24 23 32 13 31

14 42 14 41

u u u u u u u u u u

u u u u u u u u u u

u u u u

      

    

 

 

3 11 33 22 11 44 22 11 34 43 33 44 22

11 42 24 22 33 44 34 43 22 11 23 32

23 32 44 23 34 42 24 32 43 24 33 42

12 21 33 12 21 44 12 23 31 12 24 41

13 32 21 13 22 31 13 31 44 13 34

u u u u u u u u u u u u

u u u u u u u u u u u u

u u u u u u u u u u u u

u u u u u u u u u u u u

u u u u u u u u u u u

     

   

   

   

    41

14 21 42 14 22 42 14 31 43 14 42 33

u

u u u u u u u u u u u u   

 

4 11 22 33 44 11 34 43 22 11 23 32 44 11 23 34 42

11 24 32 43 11 24 33 42 12 21 33 44 12 21 34 43

12 23 31 44 12 23 34 41 12 24 31 43 12 24 41 33

13 21 32 44 13 21 34 42 13 22 31 44 1

u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u

    

   

   

    3 22 34 41

13 24 31 42 13 24 32 41 14 21 32 43 14 21 42 33

14 22 31 43 14 22 42 33 14 23 31 42 14 23 32 41

u u u

u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u u u u

   

   
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