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    Abstract—This study explores the dynamics of a 

piezoelectric energy harvester coupled with a master-slave 

system. The entire system is modeled as a two-degree-of-

freedom system (2-DOF), along with a first-order 

differential equation governing the dynamics of the 

harvested voltage. The perturbation method is applied to 

derive the slow-flow modulating equations that govern the 

master-slave oscillation amplitudes and phases. By 

analyzing various response curves, the effects of different 

system parameters on both vibration amplitudes and 

harvesting voltage are investigated. The findings indicate 

that the system can be controlled as a vibration control or 

energy harvester.  Optimal parameters for energy 

harvesting as well as for vibration control purposes are 

reported based on analytical investigations. The results are 

validated through numerical simulations with MATLAB 

algorithms (ODE45) using time response, phase 

plane, Poincaré map, and bifurcation diagram, where an 

excellent agreement between the numerical solutions and 

analytical investigations has been demonstrated. 

 

Keywords—Energy harvesting, stability, static bifurcation, 

vibration control, perturbation method, Poincaré-map. 

I. I

. INTRODUCTION 

ecent advancements in remote monitoring and integrated 

circuit technology have led to a growing interest in self-

powered wireless low-power electronic components. 

These devices can be powered by harnessing energy from the 

surrounding environment using vibration energy harvesting 

technology. Piezoelectric vibration energy harvesting 

technology offers several excitation types for collectors and 

different working modes, making it a promising approach to 

power such devices.  
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Despite the significant progress made in this area and 

extensive reviews, there are still several challenging issues to 

address, such as improving the efficiency of energy 

harvesting and addressing power management issues to ensure 

continuous operation, we added a piezoelectric , RC circuit and 

nonlinear stiffness between master and slave system In order to 

enhance the versatility of the system, efforts were made to 

expand its functionality beyond being solely a vibration 

controller, allowing it to also function as an energy harvester. 

   .  

Future research directions in this field include developing 

novel materials with improved piezoelectric properties, 

designing more efficient energy harvesting systems, and 

developing advanced power management strategies to ensure 

reliable and continuous operation of such devices [1-3]. The 

addition of a nonlinear coupling spring element to the vibration 

absorber can improve its performance by offering more design 

flexibility, accommodating larger amplitude vibrations, and 

reducing resonant peaks in the system. It is worth noting, 

however, that nonlinearities in the system can cause dynamic 

instabilities, leading to an increase in vibration amplitudes 

instead of their reduction, which can facilitate more energy 

harvesting [4,5]. Combinational resonance can occur in a 

system due to its nonlinear behavior, where multiple 

frequencies interact nonlinearly, resulting in nearly periodic 

vibrations with significant amplitudes. Similarly, one-to-

one internal resonance can arise when different vibration 

modes exhibit a specific mathematical relationship, causing 

nonlinear interaction and energy exchange. Both of these 

situations can cause dynamic instabilities and amplify vibration 

amplitudes, requiring careful system design and analysis to 

mitigate these challenges [6]. There has been a significant 

interest in using piezoelectric vibration-based energy harvesters 

as potential power sources for electronic devices, as indicated 

by several literature reviews on the subject [7]. New and 

improved techniques for harvesting energy using piezoelectric 

materials have been explored by scientists. However, the 

efficient vibration energy harvesting using these methods 

remains an ongoing area of research. In the past, the focus was 

mainly on increasing power density by targeting a single linear 

resonance frequency [8]. Although the performance of energy 

harvesters is generally limited to a narrow frequency range, it 

can be improved by utilizing a linear anti-resonance regime and 

optimizing the resistive load to achieve higher power output [9]. 

The primary aim of designing energy harvesting devices is to 

achieve resonance at multiple frequencies, resulting in increased 

efficiency and power output. To improve device efficiency, 
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researchers have proposed an L-shaped piezoelectric structure 

that can resonate at two frequencies. In addition to linear 

resonance, nonlinearity has also been explored by researchers to 

enhance the performance of energy harvesting systems. By 

selecting suitable parameters, researchers can 

achieve broadband energy harvesting by enhancing the 

electrical power harvested at various frequencies of ambient 

vibrations [10]. 

To broaden the operational frequency bandwidth for a given 

drive acceleration amplitude and increase power density, an 

alternative approach for vibration energy harvesting is to utilize 

parametric resonance. However, the presence of nonlinear 

attachments in the harvester can lead to hysteresis behavior in 

the frequency response near resonance [11]. For extracting 

energy across a wide frequency range, it is advisable to operate 

in the vicinity of quasi-periodic vibrations away from 

resonance. To achieve optimal energy efficiency in both single-

degree-of-freedom (SDOF) and multi-degree-of-freedom 

(MDOF) mechanical systems, various techniques have been 

utilized [12]. Multi-degree-of-freedom (MDOF) systems have a 

wide range of applications in various fields, including industrial 

machinery [13-15], Vehicles used for transportation [16,17], 

Vibration induced by wind and human movement can be 

harnessed to generate energy. Dual-mass or multi-mass 

vibration energy harvesters have been shown to have 

superior energy harvesting capabilities compared to their single-

mass counterparts [18]. Engineers have recently been 

concentrating on introducing nonlinearities in vibration 

absorbers or tuned mass damper systems to improve energy 

harvesting performance in engineering structures such as 

vehicle suspensions, tall buildings, and large flexible bridges. 

This technique is especially beneficial in dealing with random 

forces or motion excitations [19,20]. 

 Numerous innovative designs for energy harvesting 

and vibration suppression (NES) have been suggested, and both 

experimental and analytical investigations have been conducted 

to explore these methods. One study investigated a 

new piezoelectric energy harvesting approach that utilized NES 

and demonstrated its ability to achieve a broad range of power 

output [21]. in a different study, integrated vibration 

suppression and piezoelectric energy harvesting were examined 

for a primary oscillator exposed to harmonic excitation. The 

study noted quasi-periodic responses near the resonance 

frequency, leading to decreased resonant amplitude, wider 

energy harvesting bandwidth, and targeted energy transfer [22, 

23]. Two additional studies were centered on the utilization of 

piezoelectric materials for the suppression of mechanical 

vibration and energy harvesting [24, 25].  

The effectiveness of a vibration absorber consisting of a 

simple mass-spring-damper system in suppressing nonlinear 

vibrations in a weakly nonlinear oscillator subjected to periodic 

external excitation was investigated in the first study, we 

compare our work with [24] Based on the findings, it was 

determined that adding a piezoelectric and nonlinear stiffness 

enhance the flexibility of the system to act not only as a 

vibration controller but also as an energy harvester. 

. In the second study, a nonlinear energy sink (NES) 

absorber coupled to an electric circuit through a piezoelectric 

mechanism was explored for periodic and quasi-periodic 

vibration-based energy harvesting. Both studies 

utilized mathematical techniques to analyze the systems and 

showed the efficacy of the suggested solutions. 

This paper investigates a two-degree-of-freedom system 

coupled with a first-order differential equation to harvest 

electrical voltage. The perturbation method is utilized to derive 

the slow-flow modulating equations governing the oscillation 

amplitudes. We examine how different system parameters affect 

the vibration amplitudes and harvesting voltage through 

response curves, showing that the system can display either 

periodic or quasi-periodic motion depending on these 

parameters. We conduct analytical investigations to determine 

the optimal system parameters for energy harvesting and 

vibration control purposes. Additionally, we conduct numerical 

simulations using various techniques and find that the results 

obtained numerically agree very well with the analytical 

findings.  

II. I

I. MATHEMATICAL MODEL AND FREQUENCY-

RESPONSE EQUATION 

A. Mathematical model 

The equations of motion that describe the nonlinear 

oscillations of the master-slave system coupled with a 

piezoelectric circuit as shown in Figure (1), can be 

expressed as follows [31, 32]: 

 

 
Figure 1: Two-degree-of-freedom mechanical system 

coupled to a piezoelectric circuit. 
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where and  are the displacement, velocity, and 

acceleration of the master system, and  denote the 

displacement, velocity, and acceleration of the slave system, 

 represents the harvesting voltage of piezoelectric 
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circuit,   and  denote the master and slave masses, 

respectively,  and  are the linear damping coefficients of 

the master and slave systems, respectively.  and  are the 

linear and nonlinear damping coefficients of the master 

system,  and  are the linear and nonlinear damping 

coefficients of the slave system,  and  denote the excitation 

force amplitude and its frequency, respectively.  ,  and  

are the electro-mechanical coupling coefficients.  and  

represent the electrical capacitance and resistance of the 

electrical circuit.   By introducing the dimensionless 

parameters and 

 (where  is a representative length) into Equations 

(1a)-(1c), one can obtain the following dimensionless 

equations of motion:  

   

   

      

   

2

1 1 1 1 1 1 1 2 2 1 2

3 3

1 1 2 1 2 1

( ) ( )

( ) cos( )

x x x x x x x

x x x v f
      (2.a)                  

2 3

2 2 2 1 2 2 3 1 3 2 1 2
( ) ( )x x x x x x x v          

        (2.b)                                                                        

3 1 2
( )v v x x   

                                       (2.c)                                                                                                                            

where

 

 

B. Perturbation Analysis 

To investigate the dynamical behaviors of the nonlinear 

system given by Equations (2a) - (2c), an approximate 

solution has been sought applying multiple time scales method 

as follows [26, 27]:  
2

1 11 0 1 12 0 1
( , ) ( , ) ( , ) ( )x t x T T x T T O    

      (3.a)                                                                                            

2

2 21 0 1 22 0 1
( , ) ( , ) ( , ) ( )x t x T T x T T O    

      (3.b)                                                                                       

2 2

1 0 1 2 0 1
( , ) ( , ) ( , ) ( )v t v T T v T T O     

      (3.c)                                                                                             

where is the perturbation parameter,  and   

are the fast and slow time scales of the system motion. In 

terms of  and , the ordinary derivatives  and   can 

be expressed as follows:    

    


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

2
2
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,  2 ,
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d d
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dt dt

D j
T

         (4)                                                  

To make damping, nonlinearities, and primary resonance force 

appear in the same perturbation equations, we scale the 

equation parameters as follows:  
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Substituting Equations (3)-(5) into Equations (2a)-(2c) with 

equating the coefficients of the same power of , we have 

O (
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The solution of the homogeneous differential equation given 

by Equation (6) can be expressed as follows:  
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where  denotes the complex conjugate of the preceding 

terms. The coefficients  ) and  are unknown 

coefficients in  at this stage of the analysis. They will be 

determined by eliminating the secular and small-divisor terms 

at the next approximation order. Inserting Equations (8) into 

Equations (7c), we get             

   

 


   
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1 0 1 0 2 0 2 0

1 0 2 0

1 0 1 1 1 2 2
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Where 

  

 

 
  

Inserting Equations (9) into Equations (7a) and (7b), we have 
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To investigate the system dynamics at the simultaneous 

primary-internal resonance conditions ( ), 

let us introduce the parameters  and  to describe the 

considered resonance conditions as follows:  
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,ˆ ˆ         (11)                          

Substituting Equation (11) into Equations (10a) and (10b), we 

can obtain the following solvability conditions of Equations 

(10): 
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To investigate Equations (12a) and (12b), let us express  and 

 in the polar forms as follows [26, 27]:   
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where  and  are the steady-state amplitudes of the 

instantaneous displacements of the coupling piezo system, 

while  and  are the phases of the two motions. Inserting 

Equation (13) into Equations (12), with separating the real and 

imaginary parts, yields: 
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where . Restoring the 

original parameters into Equation (14) (i.e., 

 and  ),  we have                                                                                                            
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Now, by substituting Equations (8), (9), (11), and (13) into 

Equation (3), we have.  
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(16.b)                                

The coupled master-slave-harvester system can be analyzed by 

solving Equation (15). Accordingly, at the steady-state 

oscillation of the master-slave system, we have 

. Setting this condition into 

Equations (15) yields the flowing nonlinear algebraic system: 
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By solving the above nonlinear equations in terms of the 

system parameter, one can obtain the bifurcation diagrams 

given in the following section. In addition, to investigate the 

stability of Equation (17) stability, let  the solution of Equation 

(17) be ( ) and suppose (  ) 

denote small perturbations, so one can express the following:  
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(18)                                                  

According to Equation (18), we have  

 

     
 

 

  



1 11 2 21 1 11

2 21

, , ,
da da da da d d

d d d d d d
d d

d d

    

(19)                                                           

Substituting Equations (18) and (19) into Equation (15), one 

can obtain the following linearized model: 
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
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  (20) 

The coefficients of the above Jacobian matrix are given in the 

appendix. Accordingly, to investigate the stability of the 

nonlinear system given by Equation (15) can be explored by 

checking the eigenvalues of the linear system given by 

Equation (20) [28]. 

III. R

ESULTS AND DISCUSSIONS 

A. Results 

Given the obtained solution of Equation of motion (2) as 

given in Equation (16), designing the slave characteristics to 

function as a vibration absorber or energy harvester requires 

deep investigations for the system dynamics. The introduced 

analyses are obtained following the dimensionless system 

parameters: 

 and , unless otherwise stated. Figure (2) 

illustrates the response curve of the master-slave system at 

three different values of the excitation force amplitudes . The 

figure shows that the oscillation of the master system is 
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directly proportional to the excitation amplitudes. It is clear 

from the figure also that the harvester response curve is a 

difference between the master response curves and the slave 

response curves because piezoelectric material lies between 

the master and the slave. The effect of the parameter  on the 

system response curve is investigated through three different 

values of  (i.e.,  and ) as illustrated in 

Figure (3). By examining Figure (3), one can deduce that 

increasing   from  to  shifts the response curve to 

the right making the master and harvester minimum vibration 

amplitude occur at , while decreasing  from  

to  shifts the response curve to the left to a minimum 

oscillation of both the master and harvester system occurring 

at . Accordingly, by altering the mass ratio of the 

master and slave  , depending on the desired purpose of 

the presented system to function as an absorber or energy 

harvester, one can obtain the lowest oscillation amplitude of 

the master system or the maximum harvesting voltage.

 

  

 

(a) (b) (c) 

Figure 2.  Oscillation amplitudes of the master-slave-harvester system at three different values of excitation  and 

: (a) master, (b) slave, and (c) harvester. 

 

    Based on Figure (3) when ,  the system's 

instantaneous oscillation and harvesting voltage are illustrated 

as shown in Figure (4) at three distinct master-slave mass ratio 

values   (i.e., when  and ). it is clear 

from the figure that the master system oscillates with a very 

small amplitude at , while the slave system exhibits 

the maximum vibration amplitude at . In this case 

(i.e., ), To prevent or lessen the nonlinear oscillation 

of the master system, the slave system acts as an absorber, 

absorbing all surplus energy brought on by the excitation force 

. However, the same figure demonstrates that the 

increase of the mass ratio from  to  

maximizes the master oscillation amplitude by using the slave 

system as an exciter, which also raises the harvesting voltages. 

therefore, the presented system can be employed to operate as 

an absorber or energy-harvesting device by controlling the 

mass ratio. The effect of the master-slave linear stiffness ratio  

  on the system response curve has been illustrated in 

Figure (5).  It is clear from the figure that  acts like the mass 

ratio coefficient , but increasing  from  to  shifts 

the response curve to the right, while decreasing  from  

to  shifts the response curve to the left.   
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(a) (b) (c) 

Figure 3.  Oscillation amplitudes of the master-slave-harvester system at three different values of the master-slave mass ration 

 and : (a) master, (b) slave, and (c) harvester. 

 

  
(a) (b) 

 
(c) 

Figure 4.  Time response of the master-slave-harvester system at three different values of the master-slave mass ratio 

 when : (a) master, (b) slave, and (c) harvester. 

 

The effect of the nonlinear stiffness coefficients of the master 

system   on the whole system dynamics is 

explored through Figure (6), where the system response curves 

at and  is depicted. It is clear from the 

figure that the positive values of   bend the response curve 

to the right to act as the hard spring Duffing oscillator, while 

the negative values of  bend the response curves to respond 

as a soft spring Duffing oscillator having multiple solutions. 

To validate the accuracy of the plotted response curves in 

Figure (6), the whole system response curve is plotted again as 

in Figure (7) when  against the numerical solution 

of Equation (2), where the numerical solution is distinguished 

as small circles.  It is obvious that the analytical solution and 

the result have excellent concordance. given by Equations (16) 

and the numerical solution obtained by applying the ODE45 

algorithm. It is clear from Figure (7) also that the master-

slave-harvester system may oscillate with a nonperiodic 

motion at . 
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(a) (b) (c) 

Figure 5.  Oscillation amplitudes of the master-slave-harvester system at three different values of   and  : (a) 

master, (b) slave, and (c) harvester. 

   
(a) (b) (c) 

Figure 6. Oscillation amplitudes of the master-slave-harvester system at three different values of   and  : (a) 

master, (b) slave, and (c) harvester. 

 

  
 

(a) (b) (c) 

Figure 7. Oscillation amplitudes of the master-slave-harvester versus the numerical solution (small circle) according to Figure 

(6) when : (a) master, (b) slave, and (c) harvester. 

 

The behavior of the proposed system for various absorber 

nonlinear stiffness coefficient values    are 

investigated through Figures (8)-(10), where Figure (8) shows 

the system response curves at  and .  

The figure shows how the magnitudes of the nonlinear 

stiffness coefficient of the absorber have a significant impact 

on the dynamical behaviors of the entire system ,  where the 

system may perform aperiodic motion on both sides of  

according to the sign of  either positive or negative.  

In order to verify the response curves shown in Figure (8), The 

analytical solution is plotted against the numerical solution, 

represented by little circles given by Equation (16) when 

 as shown in Figures (9a), (9b), and (9c), where it 

is reported that the numerical and analytical studies are in 

excellent agreement.  However, Figures (9a), (9b), and (9c) 

depicted that the master-slave system has three solutions when 

, in which two of these solutions are stable and one 

is unstable. The figures clearly show that of the two stable 

solutions, one has a high-oscillation amplitude and the other a 

small-oscillation amplitude, where the initial conditions 

determine whether the system under consideration will 

respond with a high or low oscillation. Finally, the 

instantaneous oscillations of the considered system according 

to Figure (9) when  at two initial sets (i.e., 

 and  

) are 

simulated in Figure (10) from the graphic, it is obvious that 

the system exhibits low oscillations at 

, while at 

, the 

system produces strong vibrations and hence harvests high 

voltage. Hence,  it is possible to increase the generated power 

by controlling the initial conditions for a high harvesting 

energy. 
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B. Comparison study 

We compared the performance of our proposed system with existing methods based on several parameters: 

1. Function: this metric describes how the system act. 

2. System parameters: parameters that control the dynamical system behavior. 

3. System components. 

And the results are shown in table 1. 

 

 Ref [24] Proposed paper 

System components Main system and absorber ( only 

amass damper system with linear 

stiffness ) 

Main system and absorber ( with linear and nonlinear 

stiffness, piezoelectric and RC circuit)  

Function Acting only as a vibration control 

  

Not only vibration control but also energy harvester 

System parameters Little parameters  Many parameters  

 

 

   
(a) (b) (c) 

Figure 8. Oscillation amplitudes of the master-slave-harvester system at three different values of   and : 

(a) master, (b) slave, and (c) harvester. 

 

   
(a) (b) (c) 

Figure 9. Oscillation amplitudes of the master-slave-harvester versus the numerical solution (small circle) according to Figure 

(9) when : (a) master, (b) slave, (c) harvester. 
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(a) (b) 

 
(c) 

  
(d) (e) 

Figure 10. High and low harvesting voltage depending on the initial conditions according to Figure (10)) at : (a) 

master, (b) slave, (c) harvester, (d)master orbit plot and Poincare-map, (e) slave orbit plot and Poincare-map.

 

 

 

IV. C

ONCLUSIONS 

The objective of this study is to examine the nonlinear 

dynamics of a master-slave system that is linked to a 

piezoelectric energy harvester. Perturbation methods are used 

to analyze the mathematical model of the whole system. The 

investigation concentrates on how different system 

parameters affect the vibration amplitudes and harvesting 

voltage. Through analytical results, the study identifies the 

ideal system parameters for both energy harvesting and 

vibration control objectives. In summary, this work 

presents optimal system parameters for energy 

harvesting and vibration control purposes, where the following 

concluded points can be summarized:   

1. Depending on the desired goal, the slave system can 

be utilized as either a vibration absorber or an energy 

harvester by modifying the master-slave mass ratio in 

accordance with the excitation frequency. 

2. Adjusting the master-slave linear stiffness ratio 

allows the slave system to operate as either 

a vibration absorber or an energy harvester depending 

on the excitation frequency, in line with its intended 

purpose. 

3. Changing the nonlinear stiffness coefficient of either 

the master or slave system can cause instability 

throughout the system, leading to 

significant excitation amplitudes for energy 

harvesting, even with a small excitation force. 

4. By taking advantage of the inherent nonlinearity of 

the system, it is possible to induce strong oscillation 

for energy harvesting purposes using only the initial 

conditions. 
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5. The conclusions drawn from this study emphasize the 

importance of modifying system 

parameters and initial conditions to achieve 

efficient energy harvesting and vibration control in 

the system under investigation. 
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