
Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

107

Performance Enhancement of Fog Environment with

Deadline Aware Resource Allocation Algorithm

Nirmeen A. El-Bahnasawy
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.

Menoufia University, Menoufia,

Egypt.
nirmeena.el-bahnasawy@el-

eng.menofia.edu.eg,

https://orcid.org/0000-0002-4542-
323X

Amal EL-Nattat
Computer Science & Eng. Dept.,

Faculty of Computing and Artificial

Intelligence.

Sadat City University.
Menoufia, Egypt

amal.elnatat@fcai.usc.edu.eg

Ayman El-Sayed
Computer Science & Eng. Dept.,

Faculty of Electronic Eng.

Menoufia University Menoufia,

Egypt.
 ayman.elsayed@el-

eng.menofia.edu.eg ,

https://orcid.org/0000-0002- 4437-
259X

Sahar Elkazzaz,

Computer Science & Eng. Dept.,

Faculty of Electronic Eng.
Menoufia University Menoufia

Egypt

Sahar.elkazaz@ejust.edu.eg

Abstract — Fog computing is a new computing paradigm

that has been proposed to extend cloud computing

services to the edges of cloud computing networks.

Minimizing the total completion time of an application

without violating user-defined deadline is one of the

most important problems that are related to task

scheduling in fog environments. In this paper, we have

proposed a new algorithm called Deadline Aware

Resource Allocation (DARA) algorithm. The main

contribution of this algorithm is to enhance the

performance of fog environment by allocating resources

in an efficient manner under deadline constraint. The

algorithm is compared with Dynamic Resource

Allocation Method (DRAM) algorithm. Simulation

results proved that our proposed algorithm provides

better performance in terms of makespan, total cost,

and resource utilization.

Keywords — Cloud computing, Fog computing, Task

scheduling, Resource allocation

1. INTRODUCTION

Cloud computing is a powerful technology that

provide many on-demand services to users over the

internet. It introduces a lot of features like scalability,

flexibility, and performance cost efficiency. Cloud

computing is based on virtualization technology [1].

The most important drawback of cloud computing is

that cloud data centers are geographically far away

from end users. This drawback added some

limitations on using cloud computing for time

sensitive applications that require low latency. To

address the limitations of cloud computing, fog

computing has been proposed [2-4].

1.1 Fog computing

Fog computing is a new distributed computing

paradigm that was first introduced by Computer

Information Systems Corporation “Cisco” in 2012[5].

It acts as an intermediate layer between cloud data

centers and end users [6]. Like cloud computing, fog

computing is also based on virtualization. Fog

computing extends cloud services like data, storage,

networking, and computing services closer to end

users as shown in Figure 1 [7-9]. So, fog is best

suited for real time applications [10]. Fog helps to

overcome the limitation of cloud by providing real-

time and low latency services. So, fog computing

doesn’t replace cloud computing, but they

complement each other [11-14].

1.2 Task Scheduling and Resource Allocation In

Fog Environment

Fog computing environment consists of a set of

heterogeneous resources with different capabilities.

So, task scheduling is an important issue to specify

which resource best fit to which task. The main

objective of task scheduling in fog computing is to

map tasks to the available resources and determine

the order of execution of these tasks in order to

minimize the total execution time (makespan). Task

scheduling is classified into two classes according to

the dependencies between tasks: (1) dependent task

scheduling, (2) independent task scheduling. In

dependent task scheduling, there are dependency

relationship and communication between tasks [15].

On the other side, there are no dependency

relationship and communication between tasks in

independent task scheduling [16], [17]. Effective

scheduling techniques are required to optimize and

enhance the overall performance of computing

systems.

In fog computing, there are limited physical

resources in terms of storage, memory and processors

mailto:nirmeena.el-bahnasawy@el-eng.menofia.edu.eg
mailto:nirmeena.el-bahnasawy@el-eng.menofia.edu.eg
https://orcid.org/0000-0002-4542-323X
https://orcid.org/0000-0002-4542-323X
mailto:amal.elnatat@fcai.usc.edu.eg
mailto:ayman.elsayed@el-eng.menofia.edu.eg
mailto:ayman.elsayed@el-eng.menofia.edu.eg
https://orcid.org/0000-0002-4437-259X
https://orcid.org/0000-0002-4437-259X
https://orcid.org/0000-0002-4437-259X
mailto:Sahar.elkazaz@ejust.edu.eg

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

108

that are required to serve many user tasks or requests

[18].

Figure 1. Hierarchal architecture of fog computing

[10].

Consequently, efficient resource allocation is

required to achieve highest system throughput and

maximum profit. Resource allocation is defined as a

systematic approach to allocate available resources to

the clients over the internet [2].

The main contribution of this paper is to assign tasks

of customers to the available resources of fog

computing environments in a prioritized fashion to

minimize the completion time, minimize total cost,

and maximize resource utilization based on deadline

constraint.

This paper is organized as follow: Related work is

presented in Section 2. Problem definition is

illustrated in Section 3. Our proposed algorithm is

descriped in Section 4. Experimental results are

presented and discussed in Section 5. Finally, both

conclusion & future work are presented in Section 6.

2. RELATED WORK

Task scheduling and resource allocation are

important issues in fog computing. Efficient task

scheduling and resource allocation algorithm will

help to increase the overall performance of the

system. Recently, much research has discussed these

issues. In [2], they proposed a three-layered

architecture, and designed an efficient algorithm

called efficient resource allocation (ERA) for

resource provisioning in fog computing. The

architecture is based on a system model where a fog

layer is used between the end-user clients and the

cloud datacenter. In [19], the authors proposed a

priority-based task scheduling algorithm in fog

computing. Their algorithm enhanced the ERA

algorithm with priority scheme to reduce both the

average response time and the total cost. In [20] the

authors proposed an algorithm for load balancing in

cloud environment called dynamic resource

allocation method (DRAM). DRAM tends to

minimize the load-balance variance, which is relevant

to the resource utilization of each computing node,

and the average resource utilization. In [21], they

proposed a scheduling algorithm called Cost-

Makespan aware Scheduling (CMaS) heuristic to

achieve the balance between the performance of

application execution and the mandatory cost for the

use of cloud resources. Additionally, an efficient task

reassignment strategy is also proposed to refine the

output schedules of the CMaS algorithm to satisfy the

user-defined deadline constraints. In [22] it is

proposed that a new fog computing architecture,

which is divided into three layers. Then, a systematic

two-level resource scheduling model is presented.

Finally, a novel resource scheduling scheme was

proposed using an improved non-dominated sorting

genetic algorithm II (NSGA-II) with the aim to

reduce the service latency and improve the overall

stability of task execution. In [23], they proposed a

model to effectively schedule the user tasks on the

fog computing resources by combining the VM

allocation and VM selection methods in the perfect

arrangement. Various methods associated with VM

allocation and VM selection are evaluated and

combined in a suitable combination to discover the

best task scheduling combination for the effective

and optimized user data processing. In [24] the

authors aimed to provide an easy and concise view of

the High-Performance Computing (HPC) algorithms.

Firstly, they presented the classification of scheduling

algorithms based on multiple factors like fairness,

waiting time, throughput, overhead, etc. Secondly,

the forecasting has been done on HPC applications to

predict the growth rate for 2020 and beyond. The

authors in [25] proposed a task scheduling strategy

based on a hybrid heuristic (HH) algorithm that

mainly solves the problem of terminal devices with

limited computing resources and high energy

consumption and makes the scheme feasible for real-

time and efficient processing tasks of terminal

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

109

devices. HH algorithm combines the advantages of

improved particle swarm optimization (IPSO) and

improved ant colony optimization (IACO) to search

for the optimal solution for task scheduling problem

in smart production lines with fog computing. In

[26], it is proposed a multi-cloud to multi-fog

architecture and design two kinds of service models

by employing containers to reduce the service delay

improve the resource utilization of fog nodes and.

Based on these models they presented a task

scheduling algorithm for energy balancing which

uses a dynamic threshold strategy to schedule

requests in real time. In [27], they proposed a new

orchestration of Consumer to Fog to Cloud (C2F2C)

based framework for efficiently managing the

resources in residential buildings. It consists of three

layers. Cloud layer which deals with on-demand

delivery of the consumer’s demands. Fog layer that is

responsible for Resource management. Consumer

layer which is based on the residential users and their

electricity demands from the six regions of the world.

These regions are categorized on the bases of the

continents. In [28], the authors used a framework,

including three parallel algorithms, namely,

offloading, buffering, and resource allocation, to

improve resource allocation balance, throughput, and

task completion ratio. They considered a fog queuing

system with limited infrastructure resources to

accommodate real-time tasks with heterogeneities in

task types and execution deadlines. In [29]

highlighted key features of iFogSim along with

providing instructions to install it and simulate a Fog

environment. Also, they demonstrated how to

implement custom application placement in iFogSim

simulated Fog environment along with an IoT-

enabled smart healthcare case study. in [30], it is

designed novel resource allocation algorithms for the

Social Internet of Things (SFIoT) system. They adopt

the basic concept of two game models: voting and

bargaining games to formulate the interaction among

mobile devices and FC operator. Bicooperative

voting game (BVG) approach is responsible for

control decisions for the resource allocation method,

and Nash bargaining solution (NBS) is responsible

for distributing the computation resource to different

application tasks. The author in [31] investigated the

computation resource allocation and task assignment

problem in VFC from a contract matching integration

perspective. A contract-based incentive mechanism

was proposed to motivate vehicles to share their

resources, and a pricing-based stable matching

algorithm was developed to address the task

assignment problem. In [32] it is considered the

resource allocation and task scheduling problem

under fog system to minimize total tardiness of the

tasks and meet the hard deadlines. A deadline-aware

estimation of distributed algorithm (dEDA) with a

repair procedure and local search is adopted to

determine the task processing order and computing

node allocation. In [33], the authors proposed an

efficient centralized secure architecture for healthcare

system deployed in Cloud environment. Fog

Computing environment was used to run the

framework. First, health data is collected from

sensors and sent to the near edge devices. Finally,

devices transfer the data to the cloud for seamless

access by healthcare professionals. The main focus of

this work is the security as Authentication and

Authorization of all the devices. The proposed

system uses asynchronous communication between

the applications and data servers deployed in the

cloud environment. In [34] they investigated the

research challenges in Fog Computing. It promoted a

lot of research in the area of Fog Computing

application.

All previous studies concluded that resource

provisioning and allocation is the most important

issue in fog computing that can affects the processing

time of tasks because improper resource allocation

can lead to degrading the performance of the system.

However, the previous studies rarely considered QoS

parameter such as task deadline which is essential

for real time tasks. This paper differs from previous

studies in its contribution which is minimizing the

completion time and maximizing resource utilization

simultaneously under the deadline constraint to

satisfy the demands of the user and improve QoS.

3. PROBLEM DEFINITION

3.1 Fog Computing Architecture

Fog computing adds an extra fog layer between cloud

and end devices (end users). As shown in Figure 2,

the system model consists of three layers: cloud

layer, fog layer and client layer. Cloud layer (top

layer) consists of a set of cloud data centers. Client

layer (bottom layer) consists of end devices, which

send requests to the upper layers for application

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

110

execution. Fog layer (middle layer) consists of a set

of fog nodes or fog servers. Each fog node consists of

several virtual machines (VMs). Each VM contains

various physical resources including CPU, memory,

storage, and bandwidth. Our proposed algorithm is

implemented at the fog layer. In the fog layer, there is

a fog device called fog broker that acts as a resource

manager and task scheduler. Fog broker is

responsible for receiving requests or tasks from users,

managing the available resources, and generating the

most suitable schedule to specify which task will be

executed on which resource.

3.2 Problem Statement

In fog computing, scheduling means assigning the

available resources to user requests or tasks in a

specified order to satisfy user requirements and

quality of service (QoS) needed. One of the most

important parameters of QoS is deadline. In our

problem, we focused on allocating resources to tasks

considering user-defined deadline constraints.

Figure 2. Fog computing architecture [36].

Fog layer consists of S number of fog servers denoted

as S1, S2, …, Ss. Each fog server consists of M

number of VMs denoted as p1, p2, …, pm. Each VM

has its own resources and its own speed (denoted by

spi. spi is measured by the number of millions of

instructions per second (MIPS). Let N = {T1, T2, …,

Tn} represents the number of independent tasks to be

executed in fog. The problem can be stated as

follows: a set of N independent tasks will be executed

on M virtual machines considering the deadline

constraint d. We aim to minimize the completion

time of the task, minimize the total cost of resource

usage as well as maximize the resource utilization

under deadline constraint defined by the user for each

task.

4. PROPOSED ALGORITHM

Each task has different properties such as deadline,

length, and execution time. In task scheduling,

deadline is considered one of the most important

parameters for task execution, which affects QoS of

the system. The focus of DRAM [20] algorithm was

on minimizing the load balance variance and

maximizing resource utilization without considering

the effectiveness of the makespan and deadline

parameters. DARA algorithm aims to maximize

resource utilization and makespan taking into

consideration deadline. Users submit tasks with

deadline constraint for each task to the fog broker.

Then, the broker will assign these tasks to the

available resources according to the proposed

algorithm.

 The execution time of a task can be calculated by

Equation 1[35].

ET =
𝑟

𝑠𝑝𝑖
 (1)

Where spi is the VM’s speed, r is the task’s length.

On each VM, EET (Expected Execution Time) of the

task is calculated by using Eq. 1 and compared with

the deadline constraint. The VM which meet the

deadline constraint will be labeled as a valid VM.

Otherwise, it is labeled invalid VM as illustrated in

Eq. 2.

𝑉𝑀`𝑠 𝑠𝑡𝑎𝑡𝑒 = {
𝑉𝑎𝑙𝑖𝑑 𝑖𝑓 𝐸𝐸𝑇 ≤ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒
𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

Then, the task will be assigned to one of the valid

VMs, which provides the least and enough

requirements based on the task type. For example: In

case of memory task, the task will be assigned to a

valid VM that has the least and enough memory for

executing the task. In case of storage task, the task

will be assigned to a valid VM that introduce the

least and enough storage for the task. The same

approach is applied for other types of tasks.

Finally, a factor called deadline is violated (DIV) will

be used to express whether the task can be executed

before its deadline or not. DIV is a binary factor

which has two values 1, 0. DIV(T) = 1, if the

deadline of a task T is violated. In this case, the task

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

111

will be migrated to another fog server. DIV(T) = 0, if

the deadline of task T is achieved the task will be

assigned to a specific VM and removed from the

tasks ready queue.

4.1 Steps of Proposed Algorithm

5. SIMULATION AND EXPERIMENTAL

RESULTS

5.1 Simulation Environment

A simulation environment that simulates fog

environment has been built to evaluate the

performance of DARA algorithm. Visual C# .NET

4.0 is used to build the simulator on machine with:

Intel(R) Core(TM) i3 CPU M 350 @2.27GHz, RAM

of 8.00 GB, and the operating system is window 10,

64-bit.

Each fog node has different processing capabilities.

We assumed that each fog node consists of two

virtual machines. Each VM has its own processing

power that is measured by MIPS (Millions of

Instructions per Second) along with memory,

capacity, and bandwidth. The characteristics of fog

nodes are shown in Table 1. Each task has different

attributes which are shown in Table 2.

Six data sets have been used in our experiment with

variable size from 500 tasks to 3000 tasks. Each task

in data sets was generated randomly in the range

mentioned in Table 2. The experiment covered two

types of tasks: capacity tasks (that require huge

amount of storage capacity), and memory tasks (that

require more memory).

Table 1. Characteristics of fog nodes

Parameter Value

Number of fog nodes 3,4,5

Number of VMs in each node 2

Computation power of VM [10, 200]

Storage capacity of VM 5000-10000

Memory of VM 5000-10000

Memory Usage Cost 0.01-0.03

Storage Usage Cost 0.01-0.03

Table 2. Attributes of Tasks

Attribute Value

Number of tasks {500, 1000, 1500, 2000, 2500, 3000}

Arrival Time [0, 20]

Deadline [2, 10]

Length [5, 50]

Required Capacity [5, 50]

Required Memory [5, 50]

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

112

5.2 PERFORMANCE EVALUATION

PARAMETERS

We used some parameters to evaluate the

performance of the proposed algorithm in fog

computing environment. The considered parameters

are:

5.2.1 Makespan

Makespan also called “schedule length” is defined as

the maximum finish time of last task executed on the

VMs or the time when the last machine finishes. It

begins from the time the request is received to the

time that the last task is completed. To achieve higher

performance, makespan should be minimized. It can

be calculated by Equation 3[39].

Makespan = Max [CT(Pi)] (3)

Where CT is the completion time, i ϵ VMs (1≤ i ≤ m)

5.2.2 Response Time

Response time (RT) is the time taken by a task to

complete the execution [37]. In other words, it is the

elapsed time between submission and completion

time of task. It can be calculated by Equation 4 [40].

RT = CTj – SBj (4)

Where j ϵ T (1≤ j ≤ n). CT is the completion time; SB

is the submission time.

To calculate the average response time for all tasks

on one VM, Equation 5 is applied.

𝐴𝑣𝑔. 𝑅𝑇 =
∑ 𝑅𝑇𝑛

𝑗=1

𝑛
 (5)

Then, the mean of total average response time of all

VMs is calculated by using Equation 6.

Mean of total Avg. RT =
∑ 𝐴𝑣𝑔.𝑅𝑇𝑚

𝑖=1

𝑚
 (6)

Where n is the number of tasks in VM and m is the

number of VMs.

5.2.3 Throughput

Throughput is the no of tasks completed per unit

time. It reflects the efficiency of the scheduling

algorithm. It can be calculated by equation 7 [41].

Throughput =
𝑛

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 (7)

Where n is the total number of tasks

5.2.4 Resource utilization (RU)

An important optimization metric is maximizing

resource utilization. It is defined as the resource

usage of the resource units on the computing nodes.

It can be calculated as follow [41]:

RU =
∑ Makespan𝑖

m
i=1

m∗Max_Makespan
 (8)

Where i ϵ VMs (1≤ i ≤ m), max_makespan can be

expressed as:

Max_Makespan= max {Makespani} (9)

Where i ϵ VMs (1≤ i ≤ m)

5.2.5 Load Balancing

Load balancing refers to the process of distributing a

set of tasks over a set of resources, with the aim of

making their overall processing more efficient. It is

calculated by equation 10 [41].

Load Balancing =
∑ Makespan𝑖

m
i=1

m
 (10)

Where i ϵ VMs (1≤ i ≤ m)

5.2.6 Total Cost

To calculate the cost of processing a task Tj on a VM

Pi, we must calculate the usage cost of resources

included in that VM. These resources include CPU

(processing), storage, and RAM. In this work, we

have calculated only storage and memory cost. The

cost of task “j” on a VM “i” can be expressed by

equation 11 [42].

Cost (𝑇𝑗
𝑖) = Cr (𝑇𝑗

𝑖) + Cs (𝑇𝑗
𝑖) (11)

In equation 11, each cost can be calculated as follow:

RAM cost can be defined as equation 12:

Cr (𝑇𝑗
𝑖) = c1 * RAM (𝑇𝑗

𝑖) (12)

Where c1 is the RAM usage cost per data unit in VM

Pi and RAM (Tj
i) is the RAM required by task Tj .

Storage cost can be defined as equation 13:

Cs (𝑇𝑗
𝑖) = c2 * S (𝑇𝑗

𝑖) (13)

Where c2 is the storage usage cost per data unit in

VM Pi and S (Tj
i) is the storage required by task Tj.

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

113

Finally, the total cost for all tasks executed on the

system can be calculated as follows:

Total cost = ∑ ∑ 𝐶𝑜𝑠𝑡 (𝑇𝑗
𝑖)𝑛

𝑗=1
𝑚
𝑖=1 (14)

Where i ϵ VMs (1≤ i ≤ m), j ϵ T (1≤ j ≤ n)

5.3 EXPERIMENTAL RESULTS

In our simulation, we compared the evaluation

metrics of our proposed algorithm “DARA” with

those of DRAM algorithm, with varying the number

of VMs from 6 to 10 VMs and varying the number of

tasks from 500 to 3000 tasks.

5.3.1 Results on 6 VMs

The results are shown in figure 3, 4, 5, 6, 7, 8. The

comparison results of evaluation metrics between

DARA, DRAM, and MRR algorithms are listed in

table 3, 4.

From figure 3, it is shown that DARA algorithm

consumes lesser time to process tasks than DRAM.

This means that tasks are properly allocated to the

most suitable VMs that satisfy the requirements of

task and complete its execution in lesser time.

Table 3. Comparison results of DARA and DRAM algorithms on 6 VMs

No. of

Tasks

Total Makespan Average Response Time Resource Utilization

DARA DRAM DARA DRAM DARA DRAM

500 1613 1748 12.500064 13.61795955 0.326203761 0.166666667

1000 2066 2981 8.067044654 11.77713178 0.302355599 0.203007939

1500 3315 3583 8.221315193 9.36502601 0.2942182 0.256954135

2000 3542 4015 6.667184918 7.879491674 0.337756446 0.292320465

2500 2902 4245 4.621646391 6.725723458 0.577188146 0.344837063

3000 4351 4896 5.707701909 6.330559601 0.479391711 0.363596133

Table 4. Comparison results of DARA and DRAM algorithms on 6 VMs

No. of Tasks
Throughput Load Balancing Total Cost

DARA DRAM DARA DRAM DARA DRAM

500 0.309981401 0.28604119 567.5 567.5 613302.85 597935.18

1000 0.484027106 0.3354579 1171.833333 1171.833333 620397.45 604905.58

1500 0.452488688 0.418643595 1753 1753 633209.45 617677.78

2000 0.564652739 0.498132005 2301.5 2301.5 654435.05 638922.18

2500 0.861474845 0.588928151 2878.666667 2878.666667 686209.65 670737.18

3000 0.689496667 0.612745098 3444 3486.166667 728197.05 712395.58

Figure 3. Comparison of Total Makespan

 Figure 4. Comparison of Average Response Time

0

1000

2000

3000

4000

5000

6000

500 1000 1500 2000 2500 3000

M
ak

e
sp

an

No of Tasks

Total Makespan on 6 VMs

DARA

DRAM

0

5

10

15

500 1000 1500 2000 2500 3000

A
vg

 R
e

sp
o

n
se

 T
im

e

No of Tasks

Avg Response Time on 6 VMs

DARA

DRAM

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

114

Figure 4 represents the average response time

comparison. We can see from the figure that, DARA

algorithm process tasks with lesser response time

than DRAM algorithm. That makes DARA algorithm

best suited for real time applications than DRAM

algorithm. Resource utilization results shown in

figure 5 demonstrates that, DARA algorithm provide

better resource utilization than DRAM algorithm

which means that, majority of resources have been

allocated.

Figure 5. Comparison of Resource Utilization

Figure 6. Comparison of Throughput

In figure 6, it is seen that DARA algorithm provides

better throughput than DRAM algorithm. This means

that DARA can process more tasks than DRAM in

one unit time which results in improving the overall

performance of the system.

Figure 7, 8 show the load balancing and total cost

results. We can see that the two algorithms provide

the same results or close results. This shows that, we

have improved the other performance metrics while

maintaining the total cost and load balancing

parameters as stable as possible.

Figure 7. Comparison of Load Balancing

Figure 8. Comparison of Total Cost

5.3.2 Results on 8 VMs

The results are shown in figure 9, 10, 11, 12, 13, 14.

The comparison results of evaluation metrics

between DARA, DRAM, and MRR algorithms are

listed in table 5, 6.

5.3.3 Results on 10 VMs

The results are shown in figure 15, 16, 17, 18, 19, 20.

The comparison results of evaluation metrics

between DARA, DRAM, and MRR algorithms are

listed in table 7, 8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

500 1000 1500 2000 2500 3000

R
e

so
u

rc
e

 U
ti

liz
at

io
n

No of Tasks

Resource Utilization on 6 VMs

DARA

DRAM

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000

Th
ro

u
gh

p
u

t

No of Tasks

Throughput on 6 VMs

DARA

DRAM

0

500

1000

1500

2000

2500

3000

3500

4000

500 1000 1500 2000 2500 3000

Lo
ad

 B
al

an
ci

n
g

No of Tasks

Load Balancing on 6 VMs

DARA

DRAM

0

100000

200000

300000

400000

500000

600000

700000

800000

500 1000 1500 2000 2500 3000

To
ta

l C
o

st

No of Tasks

Total Cost on 6 VMs

DARA

DRAM

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

115

Table 5. Comparison results of DARA and DRAM algorithms on 8 VMs

No. of

Tasks

Total Makespan Average Response Time Resource Utilization

DARA DRAM DARA DRAM DARA DRAM

500 1100 1526 7.4820 11.5958 0.2313 0.1480

1000 1778 2005 6.4829 7.9063 0.2605 0.2262

1500 2270 2420 5.3171 6.2742 0.3794 0.2851

2000 1931 2643 3.5724 5.1750 0.4710 0.3377

2500 2488 2771 3.9312 4.3935 0.4581 0.3985

3000 2703 3222 3.6754 4.1929 0.4795 0.4092

Table 6. Comparison results of DARA and DRAM algorithms on 8 VMs

No. of Tasks
Throughput Load Balancing Total Cost

DARA DRAM DARA DRAM DARA DRAM

500 0.4545 0.3276 425.125 425.125 268582.35 256274.17

1000 0.5624 0.4987 878.375 878.375 279034.95 266753.37

1500 0.6607 0.6198 1,313.75 1,313.75 300243.95 288011.57

2000 1.0357 0.7567 1,724.625 1,724.625 315780.75 303494.77

2500 1.0048 0.9022 1,984.25 2,157.25 335729.95 323437.07

3000 1.1098 0.9310 2,201.25 2,579.125 360727.65 348347.47

Figure 9. Comparison of Total Makespan

Figure 10. Comparison of Average Response Time

Figure 11. Comparison of Resource Utilization

Figure 12. Comparison of Throughput

0

500

1000

1500

2000

2500

3000

3500

500 1000 1500 2000 2500 3000

M
ak

e
sp

an

No of Tasks

Total Makespan on 8 VMs

DARA

DRAM

0

2

4

6

8

10

12

14

500 1000 1500 2000 2500 3000

A
vg

 R
e

sp
o

n
se

 T
im

e

No of Tasks

Avg Response Time on 8 VMs

DARA

DRAM

0

0.1

0.2

0.3

0.4

0.5

0.6

500 1000 1500 2000 2500 3000

R
e

so
u

rc
e

 U
ti

liz
at

io
n

No of Tasks

Resource Utilization on 8 VMs

DARA

DRAM

0

0.2

0.4

0.6

0.8

1

1.2

500 1000 1500 2000 2500 3000

Th
ro

u
gh

p
u

t

No of Tasks

Throughput on 8 VMs

DARA

DRAM

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

116

Figure 13. Comparison of Load Balancing

Figure 14. Comparison of Total Cost

Table 7. Comparison results of DARA and DRAM algorithms on 10 VMs

No. of

Tasks

Total Makespan Average Response Time Resource Utilization

DARA DRAM DARA DRAM DARA DRAM

500 1100 1526 7.482014849 11.59587814 0.185090909 0.118414155

1000 1778 2005 6.482926517 7.906320072 0.208436445 0.180997506

1500 2351 2420 5.299293051 6.274216353 0.264142918 0.228099174

2000 1954 2643 3.597008952 5.17506273 0.371801433 0.270185395

2500 2536 2771 4.043187311 4.393547247 0.358359621 0.318837965

3000 2796 3222 3.445009154 4.141423032 0.395028612 0.333022967

Table 8. Comparison results of DARA and DRAM algorithms on 10 VMs

No. of Tasks
Throughput Load Balancing Total Cost

DARA DRAM DARA DRAM DARA DRAM

500 0.454545455 0.327653997 340.1 340.1 163129.27 145373.87

1000 0.562429696 0.498753117 702.7 702.7 173581.87 155853.07

1500 0.638026372 0.619834711 1030.1 1051 194790.87 177111.27

2000 1.023541453 0.756715853 1151.8 1379.7 225864.47 208077.67

2500 0.985804416 0.902201371 1403 1725.8 245786.97 228019.97

3000 1.072961373 0.931098696 1737.7 2090.1 271110.27 253300.37

Figure 15. Comparison of Total Makespan

Figure 16. Comparison of Average Response Time

0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500 3000

Lo
ad

 B
al

an
ci

n
g

No of Tasks

Load Balancing on 8 VMs

DARA

DRAM

0

100000

200000

300000

400000

500 1000 1500 2000 2500 3000

To
ta

l C
o

st

No of Tasks

Total Cost on 8 VMs

DARA

DRAM

0

500

1000

1500

2000

2500

3000

3500

500 1000 1500 2000 2500 3000

M
ak

e
sp

an

No of Tasks

Total Makespan on 10 VMs

DARA

DRAM

0

2

4

6

8

10

12

14

500 1000 1500 2000 2500 3000

A
vg

 R
e

sp
o

n
se

 T
im

e

No of Tasks

Avg Response Time on 10 VMs

DARA

DRAM

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

117

Figure 17. Comparison of Resource Utilization

DARA algorithm is based on dividing tasks

according to its type resulting in minimizing the

completion time and maximizing resource utilization

of the system. Also, executing tasks with higher

requirements first resulted in higher throughput and

lesser response time. On the other side, taking the

deadline of tasks into consideration improve the

overall performance of the system.

Figure 18. Comparison of Throughput

Figure 19. Comparison of Load Balancing

Figure 20. Comparison of Total Cost

6. CONCLUSION AND FUTURE WORK

Fog computing is an emerging computing paradigm

that brings cloud services nearest to the users.

Efficient resource allocation is a key issue which

affects the overall performance in terms of total

completion time of the application, resource

utilization, and the total cost of consuming resources.

In this paper, we proposed DARA algorithm that

efficiently allocate the application tasks on the

available resources under deadline constraint. It can

be implemented in the fog layer. DARA is suitable

for real-time and latency sensitive applications. Due

to few resources available in our experiment, a

simulator has been built to evaluate the performance

of DARA algorithm against DRAM algorithm. The

results showed that DARA provide better

performance than DRAM in terms of makespan,

resource utilization, throughput, and the average

response time while maintaining the total cost of

using resources and load balancing as stable as

possible. From the results we can see that the total

improvement ratio of makespan is approximately

16% while increasing the number of tasks and the

number of VMs. In the future, we can take into

consideration other QoS constraints like user defined

budget to enhance the performance of the system. On

the other side, we can enhance DARA algorithm to

improve the results of cost and load balancing. We

can also apply it on other simulators like iFogSim.

REFERENCES

[1] Kamyab Khajehei, “Role of virtualization in cloud

computing”, International Journal of Advance Research

in Computer Science and Management Studies,

Volume 2, Issue 4, April 2014.

0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000 2500 3000

R
e

so
u

rc
e

 U
ti

liz
at

io
n

No of Tasks

Resource Utilization on 10 VMs

DARA

DRAM

0

0.2

0.4

0.6

0.8

1

1.2

500 1000 1500 2000 2500 3000

Th
ro

u
gh

p
u

t

No of Tasks

Throughput on 10 VMs

DARA

DRAM

0

500

1000

1500

2000

2500

500 1000 1500 2000 2500 3000

Lo
ad

 B
al

an
ci

n
g

No of Tasks

Load Balancing on 10 VMs

DARA

DRAM

0

50000

100000

150000

200000

250000

300000

500 1000 1500 2000 2500 3000

To
ta

l C
o

st

No of Tasks

Total Cost on 10 VMs

DARA

DRAM

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

118

[2] S. Agarwal, S. Yadav, and A.Yadav, “An Efficient

Architecture and Algorithm for Resource Provisioning

in Fog Computing”, in MCEP, 2016, doi:

10.5815/ijieeb.2016.01.06

[3] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang,

“Zenith: Utility-aware Resource Allocation for Edge

Computing”, IEEE International Conference on Edge

Computing., 2107, 10.1109/IEEE.EDGE.2017.15

[4] Monika Gupta, “Fog Computing Pushing Intelligence to

the Edge”, International Journal of Science Technology

& Engineering `IJSTE`, Volume 3, February 2017.

[5] Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog

computing and its role in the internet of things. In

Proceedings of the First Edition of the MCC Workshop

on Mobile Cloud Computing-MCC ’12, Helsinki,

Finland, 17 August 2012; pp. 13–15. 2342513.

[6] Redowan Mahmud, Ramamohanarao Kotagiri and

Rajkumar Buyya, “Fog Computing: A Taxonomy,

Survey and Future Directions”, Springer Nature

Singapore Pte Ltd. 2018.

[7] Z. Ning, J. Huang, X. Wang, Vehicular fog computing:

Enabling real-time traffic management for smart cities,

IEEE Wireless Communications 26 (1) (2019) 87–93

(2019).

[8] S. K. Goyal, M. Singh, Adaptive and dynamic load

balancing in grid using ant colony optimization,

International Journal of Engineering and Technology 4

(4) (2012) 167–174 (2012).

[9] B. Donassolo, I. Fajjari, A. Legrand, P. Mertikopoulos,

Fog based framework for iot service provisioning, in:

2019 16th IEEE Annual Consumer Communications &

Networking Conference (CCNC), IEEE, 2019, pp. 1–6

(2019).

[10] Ranesh Kumar Naha, Dimitrios Georgakopoulos,

Prem Prakash Jayaraman, and Yong Xiang,” Fog

Computing: Survey of Trends, Architectures,

Requirements, and Research Directions”, IEEE Access

• August 2018.

[11] Huang CY and Xu K. Reliable realtime streaming in

vehicular cloud-fog computing networks. In: 2016

IEEE/ CIC international conference on communications

in China (ICCC), Chengdu, China, 27–29 July 2016,

pp.1–6. New York: IEEE.

[12] Masip -Bruin X, Marn-Tordera E, Alonso A, et al.

“Fog to- cloud Computing (F2C): the key technology

enabler for dependable e-health services deployment”,

2016 Mediterranean ad hoc networking workshop

(Med-Hoc-Net), Vilanova i la Geltru´ , 20–21 June

2015, pp.1–5. New York: IEEE.

[13] Lin Y and Shen H. Leveraging fog to extend cloud

gaming for thin-client MMOG with high quality of

experience. In: 2015 IEEE 35th international

conference on distributed computing systems,

Columbus, OH, 29 June–2 July 2015, pp.734–735.

New York: IEEE.

[14] Deng R, Lu R, Lai C, et al. “Optimal workload

allocation in fog-cloud computing toward balanced

delay and power consumption”. IEEE Internet Things

2016; 3(6): 1171–1181.

[15] K. Chronaki, A. Rico, M. Casas et al., “Task

scheduling techniques for asymmetric multi-core

systems,” IEEE Transactions on Parallel and

Distributed Systems, vol. 28, no. 7, pp. 2074–2087,

2017.

[16] G. Lucarelli, F. Mendonca, and D. Trystram, “A new

on-line method for scheduling independent tasks,” in

Proceedings of the 17th IEEE/ACMInternational

Symposium on Cluster, Cloud and Grid Computing,

(CCGRID ’17), pp. 140–149, Spain, May 2017.

[17] J. Wu and X.-J. Hong, “Energy-Efficient Task

Scheduling and Synchronization for Multicore Real-

Time Systems,” in Proceedings of the IEEE 3rd

international conference on big data security on cloud,

pp. 179–184, China, May 2017.

[18] T. Wauters, B. Volckaert, and F. De Turck, “Fog

Computing: Enabling the Management and

Orchestration of Smart City Applications in,” 2018.

[19] Tejaswini Choudhari, Melody Moh, and Teng-Sheng,

“Prioritized Task Scheduling in Fog Computing”,

ACMSE 18 Proceeding of the ACMSE Conference,

Article No.22, 2018.

[20] Xiaolong Xu , Shucun Fu, Qing Cai, Wei Tian, Wenjie

Liu ,Wanchun Dou , Xingming Sun , and Alex X. Liu,

“Dynamic Resource Allocation for Load Balancing in

Fog Environment”, Hindawi, Wireless

Communications and Mobile Computing, Volume

2018, Article ID 6421607, 15 pages.

[21] Xuan-Qui Pham, Nguyen Doan Man, Nguyen Dao Tan

Tri, Ngo Quang Thai and Eui-Nam Huh, “A cost- and

performance-effective approach for task scheduling

based on collaboration between cloud and fog

computing”, International Journal of Distributed Sensor

Networks 2017, Vol. 13(11).

[22] Yan Sun, Fuhong Lin, and Haitao Xu, “Multi-

objective Optimization of Resource Scheduling in Fog

Computing Using an Improved NSGA-II”, Wireless

Pers Commun (2018), Springer Science + Business

Media, LLC, part of Springer Nature 2018.

[23] Simar Preet Singh and Anand Nayyar, “Dynamic Task

Scheduling using Balanced VM Allocation Policy for

Fog Computing Platforms”, Scalable Computing:

Practice and Experience, Volume 20, Number 2, pp.

433–456, May 2019.

[24] S. Razzaq, A.Wahid, F. Khan, N. ul Amin, M. A.

Shah, A. Akhunzada, I. Ali, Scheduling algorithms for

high-performance computing: An application

perspective of fog computing, in: Recent Trends and

Advances in Wireless and IoT-enabled Networks,

Springer, 2019, pp. 107–117 (2019).

[25] J. Wang, D. Li, Task scheduling based on a hybrid

heuristic algorithm for smart production line with fog

computing, Sensors 19 (5) (2019) 1023 (2019).

[26] J. Luo, L. Yin, J. Hu, C. Wang, X. Liu, X. Fan, H.

Luo, Container-based fog computing architecture and

energy-balancing scheduling algorithm for energy iot,

Future Generation Computer Systems (2019).

[27] S. Javaid, N. Javaid, T. Saba, Z. Wadud, A. Rehman,

A. Haseeb, Intelligent resource allocation in residential

buildings using consumer to fog to cloud based

framework, Energies 12 (5) (2019) 815 (2019).

[28] L. Li, Q. Guan, L. Jin, M. Guo, Resource allocation

and task offloading for heterogeneous real-time tasks

with uncertain duration time in a fog queueing system,

IEEE Access 7 (2019) 9912–9925 (2019).

Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022

119

[29] R. Mahmud, R. Buyya, Modeling and simulation of

fog and edge computing environments using ifogsim

toolkit, Fog and Edge Computing: Principles and

Paradigms (2019) 433–465 (2019).

[30] S. Kim, Novel resource allocation algorithms for the

social internet of things-based fog computing radigm,

Wireless Communications and Mobile Computing 2019

(2019).

[31] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, J.

Rodriguez, Computation resource allocation and task

assignment optimization in vehicular fog computing: A

contract-matching approach, IEEE Transactions on

Vehicular Technology (2019).

[32] Chu-ge Wu, Ling Wang, “A Deadline-Aware

Estimation of Distribution Algorithm for Resource

Scheduling in Fog Computing Systems”, Apr 2019,

IEEE Congress on Evolutionary Computation (CEC)

[33] Chandu Thota, Gunasekaran Manogaran, Revathi

Sundarasekar, Varatharajan R, and Priyan M. K.,

“Centralized Fog Computing Security Platform for IoT

and Cloud in Healthcare System”, 2018, IGI Global.

[34] S.Balamurugan , L.Jeevitha, A.Anupriya, and

Dr.R.Gokul Kruba Shanker, “Fog Computing:

Synergizing Cloud, Big Data and IoT- Strengths,

Weaknesses, Opportunities and Threats (SWOT)

Analysis”, International Research Journal of

Engineering and Technology (IRJET), Volume: 03

Issue: 10 | Oct -2016.

[35] Latiff, M. S. A., Syed, H. H. M., & Abdullahi, M.

(2016). Fault tolerance aware scheduling technique for

cloud computing environment using dynamic clustering

algorithm. Neural Computing & Applications.

[36] Madni, S. H. H., Muhammad, S. A. L., & Coulibaly,

Y. (2016). An appraisal of meta-heuristic resource

allocation techniques for IaaS cloud. Indian Journal of

Science and Technology, 9(4), 1–14.

doi:10.17485/ijst/2016/ v9i4/80561.

[37] Haidri, R.A., Katti, C.P. & Saxena, P. C. (2014). A

load balancing strategy for Cloud Computing

environment. In Proceedings of the 2014 International

Conference on Signal Propagation and Computer

Technology (ICSPCT) (pp. 636-641). IEEE.

[38] Panda, S.K., Gupta, I., Jana, P.K.: Task scheduling

algorithms for multi-cloud systems: allocation-aware

approach. Inf. Syst. Front. 1–19, 2017.

[39] Mokhtar A. Alworafi, Atyaf Dhari , Asma A. Al-

Hashmi , Suresha , A. Basit Darem, "Cost-Aware Task

Scheduling in Cloud Computing Environment", I. J.

Computer Network and Information Security,

2017,5,52-59.

