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Abstract— One of the complications of diabetes disease is 

diabetic retinopathy (DR). Diabetic patients may suffer from 

total loss of sight. That's if it is not detected and medicated early 

enough. The early detection of DR is very important during 

funds screening on a regular basis. Detection and grading of DR 

are difficult because most fundus images suffer from 

undersaturation and noise. This paper proposes a new 

enhancement process as a solution to the poor quality of fundus 

images. It also proposes two architectures for convolutional 

neural network (CNN) models. The first one is the binary 

classifier of DR images into normal and abnormal. The second 

CNN architecture to classify the severity grades of DR. In this 

study, we also utilized different pre-trained convolutional 

neural network models to show the impact on the performance 

of the use of transfer learning from pre-trained CNN models vs 

newly defined architectures. The pre-trained CNN models and 

the two new proposed CNN models are tested using Messidor1, 

Messidor2, and Kaggle EyePACS datasets. The proposed binary 

classifier model results in F1-scores of 0.9387, 0.9629, and 0.9430 

on the Messidor-1, Messidor-2, and EyePACS datasets, 

respectively. The proposed second model classifies the five 

grades with an F1-score of 0.9133, 0.9226, and 0.9393 on the 

Messidor1, Messidor2, and Kaggle EyePACS datasets, 

respectively. The new proposed CNN model proved its 

reliability and efficiency in detecting DR and classifying severity 

grades of DR in fundus images. Preprocessing techniques 

enhanced the performance by 10.83% of accuracy and 0.13037 

in AUC using the binary model. 

Keywords— Diabetic Retinopathy; Convolutional Neural 

Network; Fundus images; Deep learning. 

I. INTRODUCTION 

Diabetes is a chronic disease caused by the low level of 

insulin production in humans. Insulin is the hormone 

responsible for maintaining the sugar level in the blood at its 

normal levels. The increase in the glucose concentration in 

the blood leads to the damage of retinal vessels [1]. About 

8.3% of the population in the USA, including children and 

adults, has diabetes [1], according to statistics from the 

American Diabetes Association. In Egypt—Alexandra, a 

study has been conducted on over 506 diabetes patients and 

diabetic retinopathy was detected in 34.6% of the studied 

patients [2]. Unfortunately, this number will keep increasing 

because of the way we live our modern lives. Research by [3] 

has been conducted in 91 countries around the world and 

concludes that the diabetes rate will increase to a rate of 69% 

of adults in developing countries and 20% of adults in 

developed countries in the next few years. Researchers in [4] 

reported that there is an 80% chance of contracting DR in a 

person with more than 10 years of diabetes. Diabetic 

retinopathy causes severe vessel damage, which nourishes 

the retina mainly by transcytosis of nutrients. Diabetic 

Retinopathy (DR) is named the "silent disease" because, 

without the full consciousness of the patient, the disease may 

damage the retinal vessels and lead to severe eye damage and 

blindness for diabetic people. Unfortunately, at the beginning 

of the DR disease, diabetes will not feel any symptoms until 

serious damage happens to the retina, like vision loss. 

Blurring, shadows, or loss of vision areas, difficulty seeing at 

night, blood vessels swelling in the eye, vessels may leak 

fluid. The high level of sugar results in leakage of fluids such 

as proteins from blood vessels in the retina, which causes soft 

and then hard exudates on the surface of the retina. This 

leakage can be in the form of different lesions like hard 

exudates, microaneurysms, hemorrhages, etc. [5]. Figure 1 

and Figure 2 show the difference between a healthy retina and 

a DR-affected retina. 

 

Figure 1: Messidor2 sample: [20] (a) Normal retinal image (b) 

diabetic retinopathy retinal image. 

 

Figure 2: Kaggle EyePACS Dataset sample: [22] (a) Normal 

retinal image (b) diabetic retinopathy retinal image. 
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The earliest lesion that can be detected at the start of the DR 

disease is a microaneurysm (MA). The high sugar level in the 

blood causes permeability of retinal blood vessels, resulting 

in the formation of MAs [7]. MA is small and looks like dark 

red spots and is often temporal to the macula. MA usually has 

sharp margins that range between 20 μm and 200 μm in 

diameter [6]. Increases in the number of MAs will lead to 

retinal ischemia and DR progression. These MAs may 

herniate, causing hemorrhages [8]. Hemorrhages (HEM) are 

the second lesion of DR. HEM is primarily caused by the 

leakage of weak vessels. HEM is also characterized by the 

form of a red spot with varying density and non-uniform 

edges. It is larger than 125 m [6]. Hard exudates (HE) is the 

third lesion of DR that are shiny, yellowish, and irregular in 

shape. HE is caused by the leakage of proteins out of the 

retinal vessels [9]. Figure 3 shows an example of these lesions 

in the human retina images. 

 

Figure 3: Retina of the eye showing microaneurysm, hemorrhages, 

and hard exudates. 

Hemorrhages and microaneurysms are the first clinically 

detected lesions indicating the presence of diabetic 

retinopathy. Most DR detection systems apply the first stage 

to extract red lesion candidates, then a second stage to decide 

whether the detected lesions are HEM or MAs. Diabetic 

retinopathy is classified according to DR severity level into 

five grades, each labelled with an integer number ranging 

between zero and four. Many research efforts have been made 

to detect the early symptoms of this harmful disease using 

image processing techniques because the early diagnosis of 

diabetic retinopathy can reduce complications of the disease 

in 90% of cases. These techniques include the use of image 

preprocessing techniques such as morphology, enhancement 

filters, edge detection, histogram manipulation, and the use 

of neural networks, support vector machines as classification 

techniques, etc. Deep learning methods such as 

Convolutional Neural Network (CNN) strongly appear to be 

the best method for the automated classification of digital 

medical images [10–13]. DR could be diagnosed directly by 

detecting abnormalities using CNN. CNNs have become the 

most famous standard in solving image recognition tasks, 

especially after the improvement of their performance with 

supportive tools like activation functions like Rectified 

Linear Units [16], Dropout [17], regularization, Batch 

Normalization [18], etc. In this research paper, we propose a 

new convolutional neural network model to detect diabetic 

retinopathy directly after applying preprocessing operations 

to enhance the quality of the fundus image. Investigating the 

RGB channels by us and by other researchers proved that the 

blue channel of the fundus image has the lowest contrast and 

suffers from undersaturation and noise, while the red channel 

suffers from oversaturation [29]. Furthermore, the green 

channel has the best contrast [2, 29, 14]. So, the preprocessing 

stage is essential for DR detection. Histogram matching is 

utilized on the red and blue images followed by a median 

filter, and the contrast limited adaptive histogram 

equalization (CLAHE) method is subsequently utilized on all 

the RGB channels of the image. At the beginning of the 

research, we focused on binary classification as normal and 

abnormal images. We moved to DR grading after the 

successful detection of abnormalities in images. The 

proposed system provides a highly accurate diagnosis and 

grading of DR, a significant improvement over human error. 

The proposed method allows for both the diagnosis and 

quantification of the severity of DR. The two proposed 

models have been trained and tested by standard datasets such 

as Messidor-1, Messidor-2, and Kaggle EyePACS after 

applying an enhancement preprocessing stage. The tested 

resolutions of the training images we have taken are 224×224, 

300×300, 380× 380, and 512×512 pixels. The DR grade of a 

fund image is classified as positive if it belongs to DR Grades 

1, 2, 3, or 4, and negative otherwise. During the research, we 

tested multiple models that have been developed via data-

driven approaches to machine learning. We have employed 

state-of-the-art pre-trained CNN models such as Alex-Net, 

Google-Net, VG19-Net, and Res50-Net as a direct classifier 

one time and as a feature extraction method another time. 

First, as a classifier, we modified the pre-trained CNN model 

to accept image sizes determined by the user and trained it 

over publicly available datasets. Secondly, we used the state-

pre-trained CNN models to extract features by using the 

weight values of the last fully connected layer of the pre-

trained CNN models as features to be classified using the 

Support Vector Machine (SVM). We have used accuracy, 

recall (sensitivity), precision, and F1-score to measure the 

performance of each model. The confusion matrix is used for 

performance evaluation (see Figure 4).  

 
Figure 4: Confusion Matrix 

 

The confusion matrix gives a clear measure of the system, 

and it does not mislead by only the total accuracy measure, 

especially when the number of classes is unbalanced. 
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Precision would determine whether our classifier is reliable 

or not. Recall (Sensitivity) is the most important evaluation 

metric in medical diagnosis applications. It tells us how many 

of the actual DR patients we were able to predict correctly 

with our classifier. The F1-score captures both sensitivity and 

precision in a single value and checks the method's 

performance.  

 

Two proposed models have been proven on fundus images of 

Messidor-2 (Decencire et al., 2014) [20] and its older version, 

Messidor-1, and EyePACS datasets for training and 

validation. Messidor-2 contains 874 examinations (1748 

images). Four images were excluded because we didn’t have 

their classification. The study’s experiments utilized 1745 

fundus images, 1012 of which had no DR lesions and 733 of 

which had DR lesions graded into four grades according to 

the severity. The Messidor-2 database was created by a 

shading video camera. The fundus images are at 2304×1536 

×1488 and 1440×960, 2240pixels. Because of the different 

image sizes, we resized all images in the database to a fixed 

size (224 ×224) pixel. The EyePACS database from Kaggle 

is retinal images provided by EyePACS [37]. It is also used 

for the evaluation of the proposed system. Kaggle EyePACS 

fundus images are taken under a variety of imaging 

conditions. The severity of diabetic retinopathy is graded 

according to a scale of 0 to 4. Most of the fundus images have 

noise and contain artifacts. Some are out of focus, 

overexposed, or underexposed. The images were collected 

from multiple clinics using a variety of cameras over an 

extended period. About 3191 images have been selected to be 

used for the evaluation of our proposed system. Contrast and 

brightness correction are applied to standardize the brightness 

and contrast of the image before processing and to highlight 

its features. During the training of models, a random-split 

approach was followed instead of k-fold cross-validation. 

The resolution of the training images we have taken is 224 × 

224 pixels. The main findings of this study are (a) insights 

into using the histogram matching technique in preprocessing 

steps. (b) testing pre-trained CNN models on funds images 

using two methods as a classifier and a feature extraction 

method (c) the efficacy of our proposed models in detecting 

or grading DR. The situation of our results is superior to 

leading studies carried out on the same datasets. The 

developed code for preprocessing, feature extraction, and 

classification was written using Matlab-19.  

II. RELATED RESEARCH WORK  

Navarro et al. (2016) [19] proposed MA detection methods. 

In the first phase, they used a polynomial contrast 

enhancement approach on the green channel of the fundus 

image. In the second phase, the authors localize MA by 

applying the Tophet transform technique, and then the Global 

thresholding model was applied to perform MA 

segmentation. For the classification of Gaussian data, kernel 

density-based classifiers and the K Nearest Neighbor 

Classifier (k-NN) are used. Kumar et al. (2018) [20] applied 

a preprocessing technique to the green channel, histogram 

equalization, and morphological processing. They used [43], 

CLAHE), Principal Component Analysis (PCA), 

morphological processing, and averaging filtering for MA 

detection and SVM for classification. They achieved a 

sensitivity and specificity rate of the DR detection system of 

around 96% and 92%, respectively, using the DIARETDB1 

database, consisting of only 89 color fundus images. 

Unfortunately, we can’t rely on their results because of their 

small dataset. Hashim et al. [21] are operating region by 

region to identify the abnormal region in the entire image. 

Image enhancement and then Gray Level Co-occurrence 

Matrix (GLCM) are applied to the selected region to perform 

lesion extraction. In the final step, all extracted lesions were 

classified by the SVM classifier, and they achieved 82.39% 

sensitivity. We have reviewed methods to detect and classify 

lesions in fundus images based on CNN's deep learning. 

Shaban et al. proposed in [10] a deep convolutional neural 

network (CNN) to automatically classify DR severity grades 

into (1-no DR), (2-moderate DR, which is a combination of 

two grades (mild and moderate DR)), and (3-severe DR, 

which is a group of severe NPDR and proliferative DR 

(PDR)) with a validation accuracy of 88%–89%, sensitivity 

of 87%Fundus images used in this study are publicly 

available from EyePACS [22]. Abr`amoff et al. [23] used 

multiple CNNs for the automatic detection of DR lesions in 

graded fundus images. The system outputs three classes: 

grade 1 negative (no DR or mild DR), grade 2: referral DR is 

present, and grade 3: vision-threatening DR is present 

(vtDR). Abr`amoff et al. obtained results of 96.8% sensitivity 

and 87% specificity for the detection of referral DR on the 

Messidor-2 dataset. Gargeya and Leng [24] used a deep CNN 

model based on deep residual learning. The output of the 

model was a binary classification (normal or abnormal for 

DR of any severity level). Preprocessing steps like rotational 

invariance, and brightness and contrast adjustment were 

applied to the training set. The dataset Messidor-2 was used 

for evaluation with a 5-fold cross-validation during training. 

The model achieved 93% sensitivity and 87% specificity. A 

random forest-based classifier was presented in [27] by 

Garima Gupta et al. The classifier achieved 82% sensitivity 

with 10-fold cross-validations on a small number of images. 

They used 191 images obtained from 58 diabetic subjects 

having different degrees of pathological severity. Lam et al. 

(2018) [31] used pre-trained Google-Net and Alex-Net 

models to classify DR stages. The Messidor-1 database and 

the Kaggle EyePACS database were used for training and 

testing. Their main problem primarily occurs in the 

misclassification of mild disease as normal. In response, 

contrast limited adaptive histogram equalization is used to 

improve their results' accuracies to 74.5% and 68.8% on the 

Google-Net and Alex-Net models, respectively. Yung-hui et 

al. [32] used an algorithm based on CNN to extract fundus 

image features. Two CNNs with a different number of layers 

are trained to extract features. They replaced the max-pooling 

layers with fractional max-pooling. The metadata of the 

image is combined with the extracted features from the two 

CNNs. An SVM classifier is used for the classification of the 

fundus images of the EyePACS dataset into DR grades. Their 

accuracy was 86.17%.  

III. METHODOLOGY  

We aim to classify DR grades in fundus images. At the 

beginning of the research, we used pre-trained CNN to be 
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trained on fundus images of the Messidor-2 database. 

Secondly, we used the pre-trained CNN as a feature extractor 

and then classified the extracted features using SVM. Finally, 

we designed our proposed CNN model and used it to solve 

the problem as a binary classifier (0: no DR, 1: DR is present). 

Then, the proposed CNN model is modified a little to be used 

to solve the problem as a five-class classifier for fundus 

images. The model is used to classify fundus images into (0: 

no DR, 1: mild DR, 2: moderate, 3: severe DR (NPDR), and 

4: PDR). The proposed CNN model architecture comprises 

an image input layer, followed by three blocks of 

convolutional, normalization, activation, and maximum 

pooling layers. The purpose of the pooling layer is 

summarized by the number of parameters (i.e., weights and 

biases) by sliding a two-dimensional filter over each channel 

and reducing the features lying within the region covered by 

the filter. The fully connected layers are responsible for the 

classification and usually consist of a set of neurons that are 

connected with all the activation maps of the neurons of the 

previous layers. The outputs of convolutional layers are 

processed using a Rectified Linear Unit (ReLU). Therefore, 

the number of filters, filter size, and stride are set in advance. 

Therefore, they do not require training. We treated RGB 

images as greyscale images represented as two-dimensional 

arrays, where every value represents pixel intensity. While 

training the model, we fed the images to CNN in batches. A 

series of successive transformations have been applied to the 

input images by the layers of the model. The model produces 

predictions based on transformations that use the pixel values 

of the images and the current weights of the model. Then the 

loss function (binary cross-entropy) compares the predictions 

with true labels and generates a loss score. This loss score is 

utilized by the Adam (adaptive moment estimation) optimizer 

to update the weights (back-propagation) of layers of the 

model using the training options, including initial learning 

rate equal to 0.001, L2 regularization factor equal to 0.1, and 

mini-batch size equal to 128. to update the model parameters 

that will allow the successful classification of images. 

A. Preprocessing 

The images within the datasets, as explained in the 

introduction section, have significant variability in color, 

illumination, resolution, and quality. Many researchers 

excluded some bad quality images from processing, and 

others proposed a CNN model to differentiate between good 

and bad quality fundus images [11]. For this reason, noise 

removal and contrast and brightness correction are applied to 

standardize the brightness and contrast of the image and to 

highlight features before classification. We apply histogram 

matching on the red and blue channels to selected and fixed 

reference images. A reference fundus image should have 

balanced brightness and color, and thus, careful selection is 

necessary. The output is an image with a brightness that is 

comparable to that of the reference image. A median filter 

and the CLAHE method are subsequently utilized on the 

three image channels, which will be followed by the unsharp 

filter as shown in Figure 5. 

CLAHE is used for improving the image contrast and was 

originally given by Zuiderveld [30]. When comparing the 

original fundus image with the enhanced one, a significant 

improvement is observed in the information of the enhanced 

fundus image. Deep learning techniques, including CNN, are 

susceptible to overfitting. Training the model using a limited 

dataset causes overfitting and fails when the trained model is 

applied to a new dataset [33]. The large number of fundus 

images used in the training reduces errors. We doubled the 

datasets under processing to decrease overfitting and to 

provide an unbiased evaluation by applying vertical 

mirroring before applying the CNN. The increase in the 

number of layers of networks does not always guarantee 

higher performance. The deep CNNs extract several low- and 

high-level features. When the image features get more 

complicated, it becomes more difficult to interpret [33]. So, 

the proposed CNN design wasn’t too deep. 

B. Method 1: Reuse Pretrained CNN 

The pre-trained CNN models are trained with the ImageNet 

database and can classify colour images into over 1000 object 

categories, such as pencil, clock, cat, and many animals. 

1) Method 1A: Pretrained CNN as a classifier 

The following diagram shown in Figure 6 illustrates how to 

reuse pre-trained CNNs such as Alex-Net, Google-Net, and 

Res50-Net for training from scratch on color fundus images. 

A new fully connected classification layer with five neurons 

is inserted at the end of the CNN without removing any layer 

from the pre-trained CNN. The inserted layer named 

‘new_fc5Classes’ is used for classifying DR grades (0: no 

DR, 1:4 according to the severity of DR) and is shown in 

Table 1. The pre-trained CNN requires input color images of 

size 224×224×3 or 227×227×3, but the color fundus images 

in the image datastores have different sizes. 

 

 

 
 

Figure 5: Preprocessing.  
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Figure 6: Reuse Pretrained Network to be trained on fundus images. 

 

TABLE:1 THE LAST LAYERS OF GOOGLE-NET AFTER INSERTION OF THE NEW FULLY CONNECTED LAYER 

 Name comments Type Activations Learnable 
142 Loss3-classifier 

1000 fully connected layer 
The layer to be used 

for features 

extraction 

Fully Connected 1×1×1000 Weights 1000×1024 
Bias 1000×1 

143 New-fc5Classes 

5 fully connected layer 

The new inserted 

layer for classifying 5 

classes 

Fully Connected 1×1×5 Weights 5×1000 

Bias 5×1 

144 Prob 

SoftMax 

-- SoftMax 1×1×5 -- 

145 new_classoutput 
 

-- Classification Output -- -- 

 

 
 

We used data augmentation to specify the desired image size. 

This helps to resize the training images automatically before 

they are input to the network. The Pretrained CNNs are 

trained from scratch over fundus images of the Messidor-2 

database.  

1) Method 1B: Pretrained CNN Models to extract 

features 

In this method, we are not going to use the CNN model for 

the classification task. We are going to use it to extract 

features. Each layer produces activation values responding to 

the input fundus image. Not all layers within a CNN are 

suitable for image feature extraction; only a few are. The 

beginning layers of the network are not suitable for feature 

extraction because they capture basic image features. It is 

logically preferred to extract features from one of the last 

layers using the activation method. We think that the 

activation values of the layer before the last classification 

layer are more suitable. For example, in Google-Net the layer 

is named “loss3-classifier”, in Res50-Net, this layer is named 

'fc1000’, and in Alex-Net, this layer is named "fc8". The 

chosen layer in all three CNN models under processing 

outputs a vector of 1000 features for every input color fundus 

image (see Figure 7). The multiclass Support Vector Machine 

is used to be trained on feature vectors extracted from the pre-

trained convolutional neural network, which is trained on our 

fundus images. Feature extraction only requires a single pass 

through the data. 

 

 
Figure 7: Reuse Network Model to extract features 

 

C. Method 2: Proposed CNN Models (DR2Net and 

DR5Net) 

We used our deep learning CNN model as a binary classifier 

(DR2Net), which was later modified to (DR5Net) as a five-

class classifier, which is shown in Table 2. We used a small 

filter size of 3 ×3 in the convolution layer to avoid losing the 

small details and features of the fundus image texture. The 

layers fc_1 and fc_2 are fully connected layers with 50 

neurons for each layer. In the binary classifier DR2Net, Fc_3 

is a fully connected layer with 2 neurons. 
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TABLE 2: OUR DEEP LEARNING CNN MODEL (DR5NET) 
 Name Type Activations Learnable 

1 Image input Image  224×224×1 --- 

2 conv_1 

163×3×1convolution 

with stride [1 1] 
padding ‘same’ 

Convolution 224×224×16 Weights 

3×3×1×16 

Bias 
1×1×16 

3 batchnorm_1 

batch normalization 
with 16 channels  

Batch 

Normalization 

224×224×16 Offset 

1×1×16 
Scale   

1×1×16 

4 Relu_1 ReLU 224×224×16 --- 

5 maxpool_1 
2×2 max pooling with 

stride [2 2] and 

padding [0000] 

Max Pooling 112×112×16 --- 

6 conv_2 
32 3×3×16 

convolution with 

stride [1 1] padding 
‘same’ 

Convolution 112×112×32 Weights 
3×3×16×32 

Bias 

1×1×32 

7 batchnorm_2 

batch normalization 

with 32 channels 

Batch 

Normalization 

112×112×32 Offset 

1×1×32 

Scale   

1×1×32 

8 Relu_2 ReLU 112×112×32 --- 

9 maxpool_2 
2×2 max pooling with 

stride [2 2] and 

padding [0000] 

Max Pooling 56×56×32 --- 

1

0 

conv_3 

64 3×3×32 

convolution with 
stride [1 1] padding 

‘same’ 

Convolution 56×56×64 Weights 

3×3×32×64 

Bias 
1×1×64 

1

1 

batchnorm_3 

batch normalization 
with 64 channels  

Batch 

Normalization 

56×56×64 Offset 

1×1×64 
Scale   

1×1×64 

1
2 

relu_3 ReLU 56×56×64 --- 

1

3 

fc_1 Fully 

connected 

layer 

1×1×50 Weights 

50×200704 

Bias 50×1 

1

4 

fc_2 Fully 

connected 

layer 

1×1×50 Weights 

50×50 

Bias 50×1 

1
5 

fc_3 Fully 
connected 

layer 

1×1×5 Weights 
5×50 

Bias 5×1 

1
6 

softmax Softmax 1×1×5 --- 

1

7 

class output Classification 

Output 

--- --- 

IV. RESULTS AND DISCUSSIONS 

A. Results of Pretrained CNN Models (Method 1) 

The CNN models Alex-Net, Google-Net, and Res50-Net 

with the inserted layer ‘new_fc5Classes’ are used for 

classification. We trained the modified CNN models as 

shown in Figure 6 from scratch on 70% of the Messidor-2 

database after applying preprocessing steps at the 

beginning as shown in Figure 5. The remaining 30% of the 

dataset contains fundus images, which have never been 

seen before by the CNN model and are used for validation. 

These steps are repeated for Alex-Net, Google-Net, and 

Res50-Net. The accuracy results range from 72% to 75% 

(see Table 3). The results of using pertained CNN models 

as classifiers did not encourage further testing with other 

datasets. The CNN models Alex-Net, Google-Net, and 

Res50-Net with the inserted layer ‘new_fc5Classes’ are 

used for image feature extraction. We used the layer ‘loss3-

classifier’ in Google-Net, 'fc1000' in Res50-Net, and ‘fc8’ 

in Alex-Net to extract features. The chosen layer outputs a 

vector of 1000 features, responding to each input fundus 

image. The multiclass linear SVM was trained with these 

CNN features to grade DR severity in fundus images. The 

Alex-Net results show a total accuracy of 73.16% and an 

F1-score of 0.6634. The Google-Net results using SVM had 

a total accuracy of 73.9% and an F1-score of 0.5682 for five 

classes (see Table 4). 

 
TABLE 3: CLASSIFICATION RESULTS OF TRAINING PRETRAINED 

CNN WITH FUNDUS IMAGES. 

 Alex-Net Google-Net Res50-Net 

Accuracy 72.11 74.02 75% 

TABLE 4: CLASSIFICATION RESULTS OF USING PRETRAINED 

CNN MODELS FOR FEATURES EXTRACTION. 

 Alex-Net Google-Net Res50-Net 

Accuracy 73.16% 73.9% 74.2% 

F1-score   0.6634 0.5682 0.722 

These CNN modes use filter sizes and hyperparameters that 

are not compatible with the importance of small details in 

fundus image texture. The filter sizes and hyperparameters 

in pre-trained models ignore the special nature of the 

medical image. This may lead to losing important features 

of small local details. 

B. Results of Proposed CNN Models (Method 2) 

Different input image sizes have been tested to find the 

smallest possible size without affecting the performance. It 

has been discovered that 224 is an acceptable size. In this 

paper, the model is trained with a split ratio of 80/20 and 

70/30 of the dataset, which means training the model from 

scratch with 80% and testing it using the remaining 20% of 

the dataset, then repeating training from scratch with 70% 

and testing it using the remaining 30% of the dataset. Three 

datasets (Messidor-1, Messidor-2, and Kaggle EyePACS 

datasets) are utilized for training and testing on the binary 

classifier model DR2Net. Figure 8 shows the classification 

results of DR2Net on the Messidor1 dataset. The resulted 

accuracy at a split ratio of 80/20 is 93.33%, sensitivity is 

93.5%, and precision is 94.2% with an AUC equal to 

0.93427 and an F1-score of 0.9387. The accuracy at a split 

ratio of 70/30 is 87.916%, the sensitivity is 85.5%, and the 

precision is 91.8%, with an AUC of 0.8721 and an F1-score 

of 0.885.  

 
Figure 8: Confusion matrixes of testing DR2Net on Messidor1 

Dataset 

Training and testing of the DR2Net model by Messidor1 

without preprocessing or color correction. The resultant 
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accuracy was 82.50%, and the AUC was 0.8039. The 

resulted accuracy of testing the Messidor2 dataset at a split 

ratio of 80/20 is 96.84%, sensitivity is 97.3%, precision is 

95.4%, and F1-score is 0.9629 with an AUC equal to 

0.9559. As shown in Figure 9, the accuracy of testing the 

Messidor2 dataset at a split ratio of 70/30 is 92.8%, the 

sensitivity is 91.8%, the precision is 91.1%, and the F1-

score is 0.9143 with an AUC of 0.932. 

 

 
Figure 9: Confusion matrixes of testing Messidor2 Dataset using 

DR2Net 

The accuracy of the testing EyePACS dataset at a split ratio 

of 80/20 is 95.22%, the sensitivity is 94.0%, and the 

precision is 94.6%, with an AUC of 0.94749 and an F1-

score of 0.9430. As shown in Figure 10, the accuracy of 

testing the EyePACS dataset at a split ratio of 70/30 is 

92.83%, the sensitivity is 90.2%, and the precision is 

92.3%, with an AUC of 0.92647 and an F1-score of 

0.91217. 

 
Figure 10: Confusion matrixes of testing Kaggle EyePACS 

Dataset using DR2Net 

A comparison among the results of the three datasets is 

shown in Table 5. The best performance was with 

Messidor2. The Messidor1 data set has the worst 

performance, maybe because it has the smallest number of 

fundus images. Kaggle EyePACS images are captured 

using different cameras, and many images have noise and 

contain artifacts. Some are out of focus, underexposed, or 

overexposed. Its good results prove the good effect of 

preprocessing. 

TABLE 5: CLASSIFICATION RESULTS OF USING DR2NET MODEL ON 

THREE DATASETS AT SPLIT RATIOS 70/30 AND 80/20. 
Split 

ratio 

Metric Messidor1 Messidor2 EyePACS 

Dataset 

70/30 Sensitivity 85.5% 91.8% 90.2% 

Accuracy  87.91% 92.8% 92.83 

AUC 0.8721 0.932 0.92647 

Precision 91.8% 91.1% 92.3% 

F1-score 0.9357 0.9142 0.91217 

80/20 Sensitivity 93.5%, 97.3% 94.0% 

Accuracy 93.33% 96.85% 95.22% 

AUC 0.93427 0.9559 0.94749 

Precision  94.2% 95.3% 94.6% 

F1-score 0.9387 0.9629 0.9430 

In the five-classes model DR5Net, the layers fc_1 and fc_2 

are fully connected layers with 50 neurons for each layer, 

and Fc_3 is a fully connected layer with 5 neurons. The 

same process that is followed with DR2Net is followed for 

training DR5Net. The model was applied to the Messidor1 

dataset and resulted in the highest accuracy of 90.83% and 

an F1-score of 0.9133. Details of the results are shown in 

the following Figure 11. and Table 6. 

. 

 
Figure 11: Confusion matrixes of testing the DR5Net model by 

Messidor1 Dataset at split ratios 70/30 and 80/20. 

 
TABLE 6: SENSITIVITY, PRECISION, AND F1-SCORE OF TESTING THE 

MODEL DR5NET ON MESSIDOR1 DATASET. 
Split 

ratio 

Metric Grade 

0 

Grade 

1 

Grade 

2 

Grade 

3 

Grade 

4 

70/30 Sensitivity 90.2% 81.5% 85.1% 80.3% It 
hasn’t  

Accuracy 86.00% 

Precision 86.8% 97.4% 75.9% 89.7% It 

hasn’t 

F1-score 0.8717 

80/20 Sensitivity 93.6% 93.4% 82.8% 91.2% It 

hasn’t  

Accuracy 90.83% 

Precision 89.5% 89.1% 97.6% 91.2% It 
hasn’t 

F1-score 0.9133 

 

DR5Net was applied to the Messidor2 dataset and resulted 

in its highest accuracy of 94.11% and an F1-score of 0.9226 

at a split ratio of 80/20. The details of the results are shown 

in the following Figure 12 and Table 7. The Kaggle 

EyePACS dataset resulted in its highest accuracy of 

95.06% and an F1-score of 0.9393 at a split ratio of 80/20 

as shown in Figure 13 and Table 8. 
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Figure 12: Confusion matrixes of testing the DR5Net model by 

Messidor2 Dataset at split ratios 70/30 and 80/20. 

 
TABLE 7: SENSITIVITY, PRECISION, AND F1-SCORE OF TESTING THE 

MODEL DR5NET ON MESSIDOR2 DATASET. 
Split 

ratio 

Metric Grade 

0 

Grade 

1 

Grade 

2 

Grade 

3 

Grade 

4 

70/3
0 

Sensitivit
y 

97% 91.4
% 

80.3
% 

73.3% 71.4% 

Accuracy 91.27% 

Precision 91.2

% 

96.1

% 

85.6

% 

100% 100% 

F1-score 0.8886 

80/2

0 

Sensitivit

y 

98.0

% 

95.4

% 

85.6

% 

80.0% 85.7% 

Accuracy 94.11% 

Precision 93.2
% 

97.2
% 

93.0
% 

100.0
% 

100.0
% 

F1-score 0.9226 

 

 
Figure 13: Confusion matrixes of testing the DR5Net model by 

Kaggle EyePACS Dataset at split ratios 70/30 and 80/20.  

 

TABLE 8: SENSITIVITY AND PRECISION OF DR GRADES RESULTED 

FROM TESTING THE MODEL DR5NET ON EYEPACS DATASET. 
Split 

ratio 

Metric Grade 

0 

Grade 

1 

Grade 

2 

Grade 

3 

Grade 

4 

70/3
0 

Sensitivit
y 

98.1
% 

98.8% 79.8
% 

65.5
% 

70.5% 

Accuracy 91.8% 

Precision 91.2

% 

100% 88.5

% 

93.4

% 

91.5% 

F1-score 0.8958 

80/2

0 

Sensitivit

y 

98.1

% 

100.0

% 

89.5

% 

72.4

% 

90.2% 

Accuracy 95.06% 

Precision 94.4
% 

100.0
% 

92.9
% 

97.7
% 

100.0
% 

F1-score 0.9393 

The proposed method applies two CNN models without 

performing any image segmentation step. The DR detection 

model (DR2Net) was approved for its excellency by its 

results compared to others. The grading DR model 

(DR5Net) grades the DR into five classes and not 3 classes 

like others [10, 23]. The achieved results outperform the 

results of comparable ultramodern techniques, as shown in 

Table 9. 
TABLE 9: COMPARISON WITH RELATED WORKS 

Cited Papers Database Methodology Result 

Shaban et al 

(2020) [10] 

 

EyePACS 

(3,648) 
images 

The system 

outputs only 

three classes by 
merging mild 

and moderate in 

one class and 
severe NPDR 

and PDR in one 

class then using 
(CNNs) for 

classification to 

Grade DR 
severity. 

Sensitivity:87%-

89% 

Acc: 88%-89% 
for only 3-classes 

Li, 2020 
[12] 

Messidor-1 

Grading DR 

severity using 

attention Deep 
Learning 

Network based 

on ResNet50 

Acc: 92.6%, 
Sensitivity: 92.0%, 

Chetoui et 
al.,2020 [13] 

Messidor-1 Detecting DR 

using CNNs 

(binary 
classifier) in 

normal and 

abnormal. 

AUC: 0.963 

EyePACS 
AUC: 0.986,  

Sensitivity: 0.958 

Abr`amoff 

et al. (2016) 

[23] 

Messidor-2  
 

The system 

outputs only 

three classes by 
merging no DR, 

mild in one 

class and 
moderate and 

severe NPDR in 

one class, and 
PDR in one 

class then using 

(CNNs) for 
classification to 

Grade DR 

severity. 

Sensitivity: 96.8%  
for only 3-classes 

Gargeya and 
Leng(2017) 

[24] 

Messidor-2 

Detecting DR 
using CNNs 

(binary 

classifier) in 
normal and 

abnormal. 

Sensitivity: 93%  

https://www.spiedigitallibrary.org/profile/notfound?author=Mohamed_Chetoui
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Lam et al., 
2018. [31] 

Messidor-1  

Grading DR 
severity using 

GoogLeNet and 

AlexNet 
models. 

Acc:74.5% 

Yung-hui et 

al. (2019) 

[32] 

EyePACS  (CNN) Acc: 86.17 

Costa, 2018. 
[34] 

Messidor-1 

Grade DR 

severity using 

Multiple 
Instance 

Learning 

 

AUC: 0.9 

Dutta, 2018 

[35] 
EyePACS 

Grading DR 
severity using 

VGGNet 16 

Acc:  86.30% 

Kwasigroch, 

2018[36] 
EyePACS VGGNet Model 

Acc: 81.70% 
Sensitivity: 

89.50% 

Chowdhury, 

2019. [37] 
EyePACS 

Inception v3 

Model (binary 
classifier) in 

normal and 

abnormal. 

Acc: 61.3% 

Sayres et 

al.,2019.[38] 

EyePACS 
2000 

images 

Grading DR 

severity using 

customized 
networks CNN 

Acc: 88.4%,  

Sensitivity: 91.5%, 

Sengupta, 

2019 [39]. 
EyePACS 

Inception-v3 

Model 

Acc: 90. 4% 

Sensitivity: 90% 

Pao, 2020 
[41] 

EyePACS 

Bi-channel 

customized 

CNN 

Acc: 87.83% 
Sensitivity:77.81% 

Specificity: 

93.88% 
AUC: 0.93 

Samanta, 

2020, [42]. 
EyePACS 

DenseNet121 

based 
Acc: 84.1% 

Thota, 2020 

[43] 
EyePACS VGGNet Model 

Acc: 74% 
Sensitivity: 80.0% 

Specificity: 65.0% 

AUC: 0.80 

Ludwig, 
2020 [40]. 

Messidor-2  
 

Detect referral-

warranted 

diabetic 
retinopathy 

(RDR)  using 

DenseNet201 

Acc: 87% 
Sensitivity: 80% 

Proposed 

Method 
(Binary 

classifier) 

 

Messidor-1 

Proposed CNN 

model DR2Net 

Sensitivity: 93.5% 
Acc: 93.33% 

AUC: 0.93427 
Precision: 94.2% 

F1-score: 0.9387 

Messidor-2 
(1745 

images) 

sensitivity 97.3% 

Acc: 96.85% 
AUC: 0. 9559 

Precision 95.3%  

F1-score: 0.9629 

EyePACS  

(3,190) 
images  

sensitivity :94.0% 

Acc: 95.22% 

AUC:0.94749 
Precision: 94.6% 

F1-score: 0.9629 

Proposed 

Method 
Grading DR 

 

Messidor-1 

Proposed CNN 
model DR5Net 

Acc: 90.83%  

F1-score 0.9133 

Messidor-2 
Acc: 94.11% 

F1-score: 0.9226 

EyePACS 

(3548) 
images 

Acc: 95.06% 

F1-score: 0.9393 

V. CONCLUSION  

Two new CNN architecture models are proposed. The first 

one, DR2Net, is for classifying fundus images into two 

classes: normal and abnormal. The second one is DR5Net, 

for classifying fundus images into five classes according to 

the severity of DR. The two models successfully classified 

fundus images. The situation of our results stands in a very 

good position among other leading studies carried out on 

the same datasets. The two proposed models outperform 

recent works, outperforming pre-trained models such as 

Google-Net, Alex-Net, and Res50-Net.Using a pre-trained 

model was not successful in extracting features from 

fundus images. Classifying the severity of DR in fundus 

images needs more research to obtain better performance 

near 100%. Preprocessing techniques enhanced the 

accuracy performance by 10.83% and AUC by 0.13037 

using the binary model. 
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