

 1

Logistic Regression Hyperparameter Optimization for Cancer Classification

Ahmed Arafa

Computer Science & Engineering Dept.

Faculty of Electronic Engineering

Menoufia, Egypt.

ahmed.arafa@el-

eng.menofia.edu.eg

Marwa Radad

Computer Science & Engineering Dept.

Faculty of Electronic Engineering

Menoufia, Egypt.

marwa_abbas2003@yahoo.com,

Nawal El-Fishway

Computer Science & Engineering Dept.

Faculty of Electronic Engineering

Menoufia, Egypt.

nelfishawy@hotmail.com

Mohammed Badawy

Computer Science & Engineering Dept.

Faculty of Electronic Engineering

Menoufia, Egypt.

mohamed.badawi@el-

eng.menofia.edu.eg

Abstract—

In machine learning, optimization of hyperparameters

aims to find the best values of model hyperparameters

yielding an optimal model with minimum prediction error. It

is the most important step that directly affects the

performance of learned model. Many techniques have been

proposed to optimize hyperparameters for different

predictive models. In this paper, the performance of grid

search, random search, Bayesian Tree Parzen Estimator

(TPE) and Simulated Annealing (SA) optimization techniques

is evaluated to determine the best hyperparameters for a

logistic regression model when used in cancer classification.

Wisconsin Breast Cancer Dataset (WBCD) has been used to

evaluate the previously mentioned optimization techniques.

The results show that Bayesian TPE outperformed other

techniques in terms of number of iterations and running time.

The number of iterations to get optimal parameters in TPE is

less than SA by 75.75 %, and random search by 77.1%. While

the time taken by TPE is better than SA, random search and

grid search by 79.9%, 86.1% and 99.9% respectively. The

resulted optimal hyperparameter values have been utilized to

learn a logistic regression model to classify cancer using

WBCD dataset. The optimized model succeeded in classifying

cancer with 98.2% for test accuracy, 0.962 for kappa statistic

and 0.963 for MCC metrics when evaluated using 10-fold

cross validation.

Keywords— Hyperparameter Optimization, Random Search

Grid Search, Tree Parzen Estimator, Simulated Annealing

I. INTRODUCTION

In the world of machine learning, there exist two main

types of parameters that determines the performance of the

predictive model. These types are model parameters and

hyperparameters. Model parameters are model coefficients

such as weights for logistic regression model or neural

network that can be estimated from the training data and

resulted during model training [1]. Contrariwise,

hyperparameters, also called tuning parameters [2], are set

of options and settings that are independent of the training

data and must be determined before training the model.

Examples on hyperparameters are the penalty type and

regularization strength for logistic regression, number of

neighbors in KNN (K-Nearest Neighbors), kernel type in

support vector machines (SVM) and number of trees in

Random Forest.

The performance of machine learning models mainly

depends on the settings of their hyperparameters [3]. These

parameters can be determined manually based on

experience through multiple tests or it can be determined

automatically using one of the widely used optimization

algorithms [4]. Recently, new trends in machine learning

depends on the automatic adjustment of hyperparameters,

so, many techniques have been proposed and applied for

this purpose. These techniques are classified as black-box

and multi-fidelity optimization techniques [5]. Figure 1

shows the classification of hyperparameter optimization

techniques. Black box optimization doesn’t use the

gradient of the objective function because the function is

inaccessible or the gradient is expensive to be calculated.

So, only the function output which is already known, is

used to estimate the hyperparameters [6]. Contrariwise to

black-box, instead of considering a single expensive

evaluation for the objective function, multi-fidelity

optimization utilizes many cheap low-fidelity evaluations

to ignore the regions with low values while keeping

expensive approximations for promising regions [7]. For

hyperparameter optimization with large data sets, cheap

approximations can be obtained by training the model using

only a randomly chosen subset of the training dataset [8].

In this paper, the performance of common black-box

optimization techniques is evaluated to optimize logistic

regression hyperparameters. These hyperparameters

include penalty and learning rate. This study includes grid

search, random search, Bayesian Tree Parzen Estimator

(TPE) and Simulated Annealing (SA) techniques. The

models are evaluated using Wisconsin Breast Cancer

Dataset (WBCD) [9]. A model for cancer classification

using the resulted optimal parameters is introduced. The

performance of the optimized model has been investigated

according to other research work.

The rest of this paper is organized as follow: section

2 explains the logistic model parameters. Section 3 reviews

the black box optimization techniques. Section 4 introduces

mailto:marwa_abbas2003@yahoo.com
mailto:nelfishawy@hotmail.com

 2

the workflow. Section 5 shows the results and discussion.

Section 6 is the conclusion and future work.

II. LOGISTIC REGRESSION MODEL AND

HYPERPARAMETERS

Logistic regression is a machine learning algorithm

used for classification problems. It utilizes the odds ratio

to model the value of a binary or a multinomial dependent

variable. The hypothesis used by logistic regression is

given by:

h(θTX) = 𝑃 (𝑌 = 1, 𝑋1, 𝑋2, ⋯ , 𝑋n) =
1

1+ⅇ−θTx
 (1)

Where 𝑌 is the dependent variable to be modelled,

𝑋 1, 𝑋2, ⋯ , 𝑋n are the given independent predictors and

𝜃 is the weight vector for given predictors. Given m as

sample size, logistic regression utilizes the cross-entropy

function as a cost function which is expressed as:

𝑱(𝜽) =
−𝟏

𝒎
∑ [

𝒚(𝒊) 𝒍𝒐𝒈 (𝒉𝜽(𝒙(𝒊))) +

(𝟏 − 𝒚(𝒊)) 𝒍𝒐𝒈 (𝟏 − 𝒉𝜽(𝒙(𝒊)))
]𝒎

𝒊=𝟏 (2)

Optimizing the cost function is required to obtain the

best weights yielding maximum performance for learning

model. Actually, many algorithms are used for this purpose.

In this paper, averaged stochastic gradient descent is used

where the updated weights in each iteration are given by:

𝜽𝒋 = 𝜽𝒋 − 𝜶
𝝏

𝝏𝜽𝒋
𝑱(𝜽) (3)

Where 𝛂 is the learning rate, which really controls the

learning process. The learning rate may be one of four

categories supported by Python libraries which are constant,

optimal, inverse scaling and adaptive learning rates [10].

For each category, initial learning rate eta0 is required to

specify the learning rate value in each iteration during the

learning process. Also, to avoid overfitting logistic

regression is regularized by adding a new term to equation

(2) that is called penalty. There are three main types of

penalties: L1, L2 and Elastic net [11,12,13]. The terms

added are 𝝀 ∑ |𝜽𝒋|
𝒏
𝒋=𝟏 for L1, 𝝀 ∑ 𝜽𝒋

𝟐𝒏
𝒋=𝟏 for L2 and

𝝀𝟏 ∑ |𝜽𝒋|
𝒏
𝒋=𝟏 + 𝝀𝟐 ∑ 𝜽𝒋

𝟐 𝒏
𝒋=𝟏 for Elastic net and 𝝀 is the

regularization strength. Logistic regression is regularized in

python libraries by choosing the appropriate penalty type.

Table 1: Logistic regression hyperparameters.

 However, when the elastic net is selected, then a new

parameter that called 1_ratio is used to determine

regularization strength. Also, warm Strat is another setting

that is used to allow or disallow the reuse of the previous

fit. Table 1 lists the most important hyperparameter for

logistic regression model used in this paper.

III. BLACK-BOX OPTIMIZATION TECHNIQUES

Black-box optimization is a general optimization

technique used to optimize functions with just a known

output. So, it doesn’t have to make many assumptions

about the problem being optimized that making it widely

applicable to different areas [14]. Black-box algorithms are

widely applied in machine learning for hyperparameter

optimization by minimizing the model’s cost function (e.g.,

cross-entropy function) over the hyperparameter space.

This section introduces the most common Black-box

techniques which are applied in this paper.

A. Grid Search

Grid search simply selects optimal hyperparameters

by testing all possible combinations among all given

hyperparameters [15]. It is guaranteed to find the optimal

solution if it exists in its hyperparameter space. Many

contributions have utilized grid search for hyperparameter

optimization [16, 17]. Despite it is widely used in

hyperparameter optimization, it has many limitations

making it unfavorable. First of them is the inability to work

over hyperparameters with continuous distribution as this

result in infinite combinations among hyperparameters.

Hyperparameter Type Values Description

penalty_type Categoric {l1, l2,

elasticnet}

Type of

regularization

l1_ratio Continuous [0,1] Mixing for

elastic net

learning_rate Categoric {constant,

optimal,

invscaling,

adaptive}

Type of

learning rate

eta0 Continuous [0,2] Initial

learning

Alpha Continuous [0.00001,0.01] Regularization

strength

Warm_start Categoric {True, False} Reuse

previous fit

Figure 1: Classification of Hyperparameter Optimization techniques [5].

 3

Discretizing the continuous range with regular intervals

may help solving this problem. However, grid search may

lose the optimal solution [18]. Another limitation of grid

search is the expensive cost in terms of time and

computational resources required to search all

hyperparameters combinations in its grid, especially with

high dimensional hyperparameter space and large datasets

[19].

B. Random Search

As its name implies, and on the contrary to grid

search, not all combinations of the hyperparameters are

tested to get the optimal solution. The number of

combinations to be tested are selected as a random subset

of the overall hyperparameters space and explicitly passed

to random search with alternative number of iterations.

Random search is simply a black-box optimization

technique that is proven theoretically and empirically to

compete grid search [20]. In another research [21], the

classification performance of random search equates the

performance of some meta-heuristic optimization

techniques namely Genetic Algorithm, Particle Swarm, and

Estimation Distribution Algorithm with lower

computational cost. Random search is not guaranteed to

return the optimal solution, but it can find a near optimal

solution with much less cost in terms of search time when

compared to grid search.

C. Bayesian Optimization

Bayesian optimization is another black-box

optimization technique. It utilizes Bayes probability

theorem by setting a prior probability distribution over the

function being optimized and combine it with the

sample information (also, called evidence) to get a

posterior function [22]. Bayesian optimization reduces the

number of iterations to get the optimal hyperparameters by

using all information of previous evaluations of the

function being optimized [23]. Recently, Bayesian

optimization has gained a high popularity in the field of

hyperparameter optimization, especially for deep learning

architectures [24]. In addition, many contributions have

been done to utilize Bayesian optimization in different

applications [25, 26]. For modeling the objective function,

Bayesian optimization utilizes many probability

distributions. Where Gaussian process (GP) is assumed to

be the most suited distribution. It is used as a prior

distribution for Bayesian optimization [27]. Recently, new

models are gaining more popularity and proved its

effectiveness. This makes it supported in hyperparameter

optimization libraries such as python's Hyper-opt.

C.1. Bayesian Tree Parzen Estimator

One of these models is the Tree Parzen Estimator

(TPE) which replaces the prior probabilistic distribution by

a non-parametric density [28]. As a result of using the

density estimator, TPE is able to use both continuous and

discrete hyperparameter spaces [29]. Actually, TPE is

structured as a tree keeping all conditional dependencies,

allowing it to support hyperparameter spaces with

conditional variables [30].

C.2. Simulated Annealing

Another model utilized by Bayesian optimization is

Simulated Annealing (SA). It is a probabilistic and

metaheuristic technique that is capable of optimizing a

given function in a process simulating the material

annealing. Recently SA has been used in hyperparameter

optimization in different application areas [31,32]. During

optimization of a function, SA moves randomly. If this

movement improves the solution, then SA accepts it [33].

IV. WORKFLOW AND DATASET

In this paper, Wisconsin Breast Cancer Dataset

(WBCD) has been used. It contains 32 numeric features

computed from a digitized image of a fine needle aspirate

(FNA) of a breast mass [9]. WBCD contains 569 samples

with 212 among them classified as Malignant (M) while the

rest 357 are classified as Benign (B).

The proposed system starts with loading the dataset

and preparing. All features were scaled to the range [0,1]

using the min-max scaler by applying the following

formula: 𝑥` =
𝒙−𝒎𝒊𝒏(𝒙)

𝒎𝒂𝒙(𝒙)−𝒎𝒊𝒏(𝒙)
 (4)

Where 𝒙 is the feature value before scaling, 𝑥 ` is the

feature value after scaling, 𝑚𝑖𝑛(𝑥) is the minimum feature

value and 𝑚𝑎𝑥(𝑥) is the maximum feature value. After

pre-processing, the dataset was split through train-test split

procedure. In this work, the train-test split ratio has been

chosen as 80-20%. The test set is preserved unseen for

evaluation of the final optimized model. The training set is

used by cross validation procedure and the optimizer for

hyperparameter estimation. During the training stage, after

initializing the parameter space, the training set is divided

to 10 folds using k-fold cross validation. Then, one of the

four used optimizers (Grid search, Random search, TPE,

SA) is chosen to fit the model and estimate the

hyperparameters at the different number of iterations.

Finally, the best hyperparameters estimated by the

optimizer are used to retrain the logistic model and estimate

its performance using the previously reserved test set.

These steps and their sequence are displayed in Figure 2.

V. RESULTS AND DISCUSSION

An important parameter for TPE, SA and random

search is the number of iterations. It represents number of

combinations that are sampled to get an estimation of the

hyperparameters. When the number of iterations increases,

the quality of the solution increase, but also the time

required to find the solution increase. So, the performance

of these algorithms should be studied with increasing the

number of iterations. The time required to achieve the

optimal solution by the different optimizers has been

evaluated. All experiments are carried out on a second-

generation machine with 8 GB RAM, and 2.4 GHZ Core i5

processor and 64-bit windows 10 as operating system. Each

experiment is repeated for 10 times and their results are

averaged.

 4

Figure 2: The proposed system.

A. Performance metrics variation with iterations

In this section, the variation of the performance

metrics for the optimized model has been studied with

increasing number of iterations. Confusion matrix

parameters which are True Positive (TP), True Negative

(TN), False Positive (FP) and False Negative (FN) are the

main parameters from which classification metrics such as

Accuracy, Precision, Recall and F1 score are computed

[34]. Another metric is Matthew’s Correlation Coefficient

(MCC) which is used in evaluating classification models

with imbalanced dataset to indicate how much the

predictive model is better than random guess [35]. Another

metric is cohesion’s Kappa which measures the agreement

between predicted and true classes [36]. Table 2 lists these

metrics with their expressions as calculated based on

confusion matrix parameters.

Several experiments have been carried out to evaluate

the mentioned parameters at different iterations. The result

showed that by increasing the number of iterations, the

performance has been improved as a result of reaching

more better values of the optimized hyperparameters. Also,

the results showed that at the 8th iteration, the performance

of TPE in terms of test accuracy, kappa an MCC reached

its maximum value, then settled down while SA reached at

the 17th iteration, but it fell down, then regained its

performance and settled down at the 33rd iteration and

finally random search reached its maximum performance

then settled down at the 35th iteration. Figures 3,4 and 5

shows the variation of test accuracy, kappa and MCC

metrics with the number of iterations for TPE, SA and

Random search algorithms. Table 3 lists the values of

hyperparameters obtained by each algorithm after reaching

steady state which represents the optimal hyperparameters

for each algorithm.

 Table 2: Classification metrics.

Table 3: Hyperparameter result of the different optimizers.

B. Iterations and time required to get the optimal solution

An important factor in the comparison between

optimization algorithms is the speed of finding an optimal

or near optimal solution. A number of experiments have

been carried out to measure the number of iterations to

reach the best solution for each algorithm. The number of

iterations required to reach the maximum test accuracy

have been recorded. The results showed that TPE reached

to the best performance at 8th iteration only while simulated

annealing reached at the 33rd iteration and finally the

random search reached at the 35th iteration. This means that

applying TPE, to get the optimal hyperparameters

contributed in reduction of iterations by 75.75 % compared

to SA and by 77.1 % when compared to random search.

Figures 6 compares the number of iterations to get the

Metric

Expression

Accuracy

𝐓𝐏 + 𝐓𝐍

𝐓𝐏 + 𝐓𝐍 + 𝐅𝐏 + 𝐅𝐍

Precision

𝐓𝐏

𝐓𝐏 + 𝐅𝐏

Recall

𝐓𝐏

𝐓𝐏 + 𝐅𝐍

F1 Score

𝟐 ∗ 𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 ∗ 𝐑𝐞𝐜𝐚𝐥𝐥

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 + 𝐑𝐞𝐜𝐚𝐥𝐥

MCC

𝐓𝐏. 𝐓𝐍 − 𝐅𝐏. 𝐅𝐍

√(𝐓𝐏 + 𝐅𝐏)(𝐓𝐏 + 𝐅𝐍)(𝐓𝐍 + 𝐅𝐏)(𝐓𝐍 + 𝐅𝐍)

Kappa

𝐏𝐨 − 𝐏𝐞

𝟏 − 𝐏𝐞

Hyperparameter

Optimized values of Hyperparameters

Grid Random Anneal TPE

penalty_type Elastic

net

L2 L2 L2

l1_ratio 0.1

- - -

learning_rate Adaptive Adaptive Adaptive Optimal

eta0 1.71 1.118 1.712 0.04099

Alpha 0.00031 0.000433 0.00053 0.000255

Warm_start True False True False

Preprocessing

Start

Dataset

Train Test Split

Test set Training set

Retrained

Model

Parameters

Cross Validation

Best Parameters

Final

Evaluation

End

Metrics

Generation

Optimizer

 5

optimal performance for TPE, SA and Random search

algorithms. Also, the time required for reaching optimal

performance is recorded. The results show that TPE takes

0.81 seconds to reach the optimal performance while SA

takes 4.0391 seconds and Random search takes 5.85

seconds. Finally, Grid search needs 3705.29 seconds to

reach the optimal solution which is a very long time when

compared to other algorithms. This means that applying

TPE resulted in reduction of time required to reach

maximum performance by 79.9%, 86.1%, and 99.9%

compared to SA, Random search and grid search

respectively. Figure 7 compares training time of TPE, SA

and Random search algorithms.

 Figure 3: Test Accuracy variation with Iterations for each optimizer.

Figure 4: Kappa statistic variation with Iterations for each optimizer.

Figure 5: MCC variation with Iterations for each optimizer.

Figure 6: Iterations taken by each optimizer to get Optimal.

Figure 7: Time taken by each optimizer to get Optimal.

C. Training Time variation with iterations

 In this section, the relation between the number of

iterations and the training time of the logistic regression

model when tuned by TPE, SA and Random search

optimizers is studied. A number of experiments have been

carried out to measure the training time taken by each

algorithm with varying iterations. To measure the time at

each iteration, each experiment is repeated for 10 times and

their time is averaged. Figure 8 illustrates the variation of

time with a number of iterations for TPE, SA and Random

search algorithms. The results show that with increasing the

number of iterations, training time increased in a linear

fashion with the three algorithms but with different slopes.

Increasing number of iterations had the minimum effect on

the Random search that had the line with minimum slope.

SA algorithm had the worst time performance as a result of

the maximum increase in time with increasing the number

of iterations. Also, TPE had a training time closer to that of

the Random search but much better than the SA

 6

 Figure 8: Training Time variation with Iterations for each optimizer.

D. Evaluation of the final optimized model

After tunning the logistic regression hyperparameters,

the resulted optimal hyperparameters are used again to

build a model for cancer classification using WBCD data

set and logistic regression. This model is tested using the

previously reserved test set and all metrics in Table 2 are

measured. The resulted evaluation metrics of this model is

listed in Table 4.

Table 4: Final Evaluation metrics of the optimized model.

Train

Acc.

Test

Acc.

Kappa MCC F1

Score

Precision Recall

0.982 0.9825 0.962 0.963 0.99 0.98 0.98

To assess the effect of tunning the hyperparameters,

the optimized model is compared with the non-optimized

model using the performance metrics in Table 2. The

results showed that the optimized model outperformed the

non-optimized model by 1.15 %, 1.75 %, 3.7%, 3.8%, 3%,

2% and 2% in training accuracy, test accuracy, kappa,

MCC, f1 score, precision and recall, respectively. Figure 9

draws a comparison between the optimized and non-

optimized models according to the discussed metrics.

Also, as a classifier it has been compared with other

classifiers using WBCD dataset. Vivek K. et al. [37]

introduced an implementation of different classification

techniques for cancer using WBCD dataset. This

implementation included Boost M1, Decision Table, J-Rip,

J48, Lazy IBK, Lazy K-star, Logistic Regression,

Multilayer–Perceptron, Random Forest and Random Tree

algorithm. They evaluated these algorithms using 10-fold

cross-validation. Also, Md. Imran in [38] compared the

performance of Naive Bayes (NB), Support Vector

Machine (SVM) and Artificial Neural Network (ANN)

each with different configuration using WBCD and 10-fold

cross-validation. The proposed optimized logistic

regression classifier outperforms SVM with linear kernel in

[38] by 1.53%, by 2.37% when compared to ANN with

radius basis function, and by 2.34 % when compared to

Gaussian NB. Moreover, the proposed optimized logistic

regression model outperforms some of Vivek K. et al. [37]

classifiers by 1.12%. 0.83%, 15.44%, 15.44% ,15.16 %,

and 12.15% when compared to logistic regression, MLP,

J48 Free, Ada-Boost M1, Decision Table and J-Rip. On the

contrary, their Lazy k-star, Lazy IBK and Random Forest

algorithms outperforms the proposed optimized model by

0.89%. Figure 10 draws illustrates a comparison between

the proposed optimised model and all other classifiers.

Figure 9: Evaluation Metrics of optimized and non-optimized models.

Figure 10: Test Accuracy of Optimized Model VS Other Classifiers.

 7

VI. CONCLUSION AND FUTURE WORK

In this paper, the performance of common black-box

techniques namely Random search, Grid search, TPE and

SA using WBCD dataset has been studied. TPE was proved

to outperform other algorithms in terms of iterations and

time requiring to get an optimized solution for logistic

regression hyperparameters. TPE reduced number of

iterations to get the optimized hyperparameter values by

75.75 % compared to SA and by 77.1 % when compared to

Random search. Also, it reduced time taken 79.9 %

compared to simulated annealing and by 86.1 % when

compared to random search and by 99.9 % when compared

to grid search. The resulted hyperparameter values have

been utilized to learn a logistic regression model to classify

cancer using WBCD dataset. The optimized model

succeeded in classifying cancer with 98.2% for test

accuracy, 0.962 for kappa statistic and 0.963 for MCC

metrics when evaluated using 10-fold cross validation. The

future work will include other optimization techniques

namely genetic algorithms and more complicated

classifiers such as Deep Neural Networks (DNN) applied

to higher dimensional datasets.

REFERENCES

[1] Yang, L and Shami, A. “On Hyperparameter Optimization of Machine

Learning Algorithms: Theory and Practice”. Neurocomputing, vol. 415,
PP. 295-316, July 2020.

[2] Kuhn M. and Johnson K. “Over-Fitting and Model Tuning”. In:

Applied Predictive Modeling, Springer, New York, NY, vol.1, PP. 64-65,
2013.

[3] Van Rijn, J. N and Hutter, F. “Hyperparameter Importance Across

Datasets”. ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, London, United Kingdom. PP. 2367–2376,
August 2018.

[4] P. Probst, A. Boulesteix and B. Bischl, “Tunability: Importance of

Hyperparameters of Machine Learning Algorithms”. Journal of Machine

Learning Research, vol. 20, PP. 1-31, 2019.

[5] R. Shawi, and S. Sakr, “Automated Machine Learning: Techniques
and Frameworks” In: Big Data Management and Analytics, 9th European

Summer School, eBISS 2019 Berlin, Germany, PP. 40-69, June 30 – July

5, 2019.

[6] H. Ghanbari and K. Scheinberg, “Black-Box Optimization in Machine
Learning with Trust Region Based Derivative Free Algorithm”. ArXiv,

vol abs/173.06925, 2017.

[7] K. Kandasamy, K. Raju, W. Neiswanger, B. Paria, C.R. Collins, J.

Schneider, B. Poczos and E. P. Xing, “Tuning Hyperparameters without
Grad Students: Scalable and Robust Bayesian Optimization with

Dragonfly”, Journal of Machine Learning Research, vol.21, PP. 1−27,

Mar 2020.

[8] Hu, Y.Q., Yu, Y., Tu, W.-W., Yang, Q., Chen, Y., and Dai, W. “Multi-

Fidelity Automatic Hyper-Parameter Tuning via Transfer Series
Expansion”. Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, PP.3846–3853, 2019.

[9] https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+

(diagnostic) last visited 28/382021.

[10] https://scikit-learn.org/stable/modules/sgd.html, last visited

26/3/2021.

[11] R.J. Tibshirani, “Regression shrinkage and selection via the lasso”.

Journal of the Royal Statistical Society. Series B (Methodological) vol. 58
(1), PP.267–288, 1996.

[12] E. Hoerl and R.W. Kennard. “Ridge Regression: Biased Estimation
for Nonorthogonal Problems”, Technometrics Vol. 12 (1), PP.55–67.

1970.

[13] H. Zou and T. Hastie,” Regularization and Variable Selection via the

Elastic Net”. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), vol. 67 (2), PP. 301−320, 2005.

[14] D. Golovin and Benjamin Solnik and Subhodeep Moitra and G.

Kochanski and John Karro and D. Sculley “Google Vizier: A Service for
Black-Box Optimization”, ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Halifax, NS, Canada, PP. 1487-

1495, August, 2017.

[15] R. Ghawi, and J. Pfeffer, “Efficient Hyperparameter Tuning with
Grid Search for Text Categorization using kNN Approach with BM25

Similarity”. Open Computer Science, vol 9(1), PP. 160–180, Jul 2019.

[16] B. H. Shekar, and G, Dagnew, “Grid Search-Based Hyperparameter

Tuning and Classification of Microarray Cancer Data”. Second

International Conference on Advanced Computational and
Communication Paradigms (ICACCP), PP. 1-8, 2019.

[17] I. Syarif, A. Pr and G. Wills, “SVM Parameter Optimization using
Grid Search and Genetic Algorithm to Improve Classification

Performance”, TELKOMNIKA, vol 14, PP. 1502-1509, 2016.

[18] C. Matache and J. Passerat, and B. Kainz, “Efficient Design of

Machine Learning Hyperparameter Optimizers”, MEng Individual Project,

Imperial College London, PP.17-18, 2019.

[19] J. Waring, C. Lindvall and R. Umeton, " Automated machine learning:

Review of the state-of-the-art and opportunities for healthcare”, Artificial
Intelligence in Medicine, vol 104, PP. 1-12, April 2020.

[20] J. Bergstra and Y. Bengio, "Random search for hyper-parameter

optimization," Journal of Machine Learning Research., vol. 13, PP. 281-

305, Mar. 2012.

[21] R. G. Mantovani, A. L. D. Rossi, J. Vanschoren, B. Bischl and A. C.

P. L. F. de Carvalho, "Effectiveness of Random Search in SVM hyper-
parameter tuning," 2015 International Joint Conference on Neural

Networks (IJCNN), Killarney, Ireland, PP. 1-8, 2015.

[22] E. Brochu, Vlad M. Cora and N. D. Freitas, “A Tutorial on Bayesian
Optimization of Expensive Cost Functions‚ with Application to Active

User Modelling and Hierarchical Reinforcement Learning”. ArXiv, vol
abs/1012.2599, 2010.

[23] J. Snoek, H. Larochelle and R P. Adams ,“Practical Bayesian

optimization of machine learning algorithms” , Proceedings of the 25th
International Conference on Neural Information Processing Systems ,PP.

2951–2959, December 2012.

[24] M. Feurer, F. Hutter “Hyperparameter Optimization.” In Automated
Machine Learning. The Springer Series on Challenges in Machine

Learning. Springer, Cham, PP. 3-33, may 2019.

[25] G. E. Dahl, T. N. Sainath and G. E. Hinton, "Improving deep neural
networks for LVCSR using rectified linear units and dropout,” IEEE

International Conference on Acoustics, Speech and Signal Processing,
Vancouver, BC, Canada, PP. 8609-8613, 2013.

[26] G. Melis, C. Dyer and P. Blunsom, “On the State of the Art of

Evaluation in Neural Language Models”, 6th International Conference on
Learning Representations (ICLR) ,2018.

[27] J. Wu, X. Chen, H. Zhang, L. Xiong, H. Lei and S. Deng,"

Hyperparameter Optimization for Machine Learning Models Based on
Bayesian Optimization”, Journal of Electronic Science and Technology,

vol 17 (1), PP. 26-40, Mar 2019.

[28] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, “Algorithms for

Hyper-Parameter Optimization", Proceedings of the 24th International
Conference on Neural Information Processing Systems, PP. 2546–2554,

December 2011.

[29] S. Falkner, A. Klein and F. Hutter, “BOHB: Robust and Efficient

Hyperparameter Optimization at Scale”, Proceedings of the 35th

International Conference on Machine Learning, PP. 80:1437-1446, 2018.

[30] I. Dewancker, M. McCourt, and S. Clark, “Bayesian optimization
primer”, 2015. URL https://app. sigopt. com/static/pdf/SigOpt_

Bayesian_Optimization_Primer. pdf.

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%20(diagn
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%20(diagn
https://scikit-learn.org/stable/modules/sgd.html
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.5555/2999325
https://dl.acm.org/doi/proceedings/10.5555/2999325
https://arxiv.org/search/cs?searchtype=author&query=Melis%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Dyer%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Blunsom%2C+P

 8

[31] C. Tsai, C. Hsia, S. Yang, S. Liu and Z. Fang, “Optimizing
hyperparameters of deep learning in predicting bus passengers based on

simulated annealing", Applied Soft Computing, vol 88, 2020.

[32] N. Pathik and P. Shukla, "Simulated Annealing Based Algorithm for

Tuning LDA Hyper Parameters", In: Theories and Applications.
Advances in Intelligent Systems and Computing, Springer, Singapore. vol

1154, PP. 515-521, June 2020.

[33] A. Gülcü and Z. KUş, "Hyper-Parameter Selection in Convolutional

Neural Networks Using Microcanonical Optimization Algorithm," IEEE

Access, vol. 8, PP. 52528-52540, Feb 2020.

[34] D.M.W Powers, “Evaluation: From Precision, Recall and F-Measure

to ROC, Informedness, Markedness & Correlation”, Journal of Machine

Learning Technologies, vol. 2 (1), PP.37–63,2011.

[35] Y. Jiao and P. Du, “Performance measures in evaluating machine

learning based bioinformatics predictors for classifications”, Quantitative

Biology, vol.4, PP. 320–330, 2016.

[36] M. Grandini, E. Bagli and G. Visani, “Metrics for Multi-Class

Classification: An Overview”, ArXiv, vol abs/2008.05756, August 2020.

[37] V. Kumar, B.K. Mishra, M. Mazzara, D. N. Thanh and A. Verma,
“Prediction of Malignant and Benign Breast Cancer: A Data Mining

Approach in Healthcare Applications. In: Advances in Data Science and

Management”. Lecture Notes on Data Engineering and Communications
Technologies, vol. 37, Singapore, Springer, 2020.

[38] M. I. H. Showrov, M. T. Islam, M. D. Hossain and M. S. Ahmed,

"Performance Comparison of Three Classifiers for the Classification of

Breast Cancer Dataset," 2019 4th International Conference on Electrical

Information and Communication Technology (EICT), Khulna,

Bangladesh, PP. 1-5, 2019.

https://www.researchgate.net/publication/228529307
https://www.researchgate.net/publication/228529307

