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Abstracd Gyroscopes are sensors that are used for
motion measurement. They are generally used to measure
rotation rate of moving equipment. There are different types
of gyroscopes including mechanical, microelectro-
mechanical (MEMS) and optical gyroscopes. Gyroscope
signal suffers from internal noise due to internal device
operation and external noise of the environment. This paper
presents a proposed hybrid technique that include both
Kalman filter and wavelet denoising. Results show the
superiority of this proposed technigue to the other filters.
Arranging the filters in cascaded hybrid structure has an
effect on the performance of the hybrid technique. Using
Kalman filter as a first stage is better than using the wavelet
as a first stage. For the comparison, two evaluation metrics
are used: Signalto-Noise Ratio (SNR) improvement and
correlation coefficient.

Keyword® Gyroscope, DWT, Wavelet denoising, Kalman
filter, noise reduction.

I. INTRODUCTION(HEADING 1)

Gyroscope is a very essential component in most
motion detection equipments. The basic idea of operation
of the gyroscope is transforming the angular movement of
an abject into an electrical signal [1]. Different types of
gyroscopes exist such as mechanical, MEMS and optical.
Mechanical gyroscope is a free wheel that takes a certain
3D space. This wheel works based on conservation of the
angular momentum principle. An angle acquisition unit is
used to pick the orientation deg This type has been
developed based on using MEMS through the utilization of
the Coriolis Effect that transforms motion into an electrical
signal based on the motion of a metal sphere connected to
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a group of springs [2]. The type of interest in thisguap

the fiber optic gyroscope. It is composed of a source,
detector, optical directional coupler and optical fiber cail.

It is based on Sagnac effect [3]. Two beams are entered at
the same time into the optical fiber coil in opposite
directions. Theseao beams are extracted from an optical
source in two equdéngth paths: clockwise and counter
clockwise. Any rotation of the coil is either clockwise or
counter clockwise leading to difference in signal paths. A
photo detector is used to interpret theereed optical
signal into an electrical signal. Phase comparison is
performed between the original signal from the source and
the received signal. Phase difference is interpreted after
that as a signal, which is further processed. This phase
signal which drectly reflects the orientation measured may
suffer from some uncertainty represented as noise [4]. It is
feasible to use some signal processing and noise reduction
techniques on this signal.

Fiber Optic Gyroscope (FOG) consists of fiber coail,
detector light source, phase modulator and coupler. Noise
can be generated by these parts of the device leading to
accuracy degradation of strap down inertial navigation
system SINS [%], such as structural resonance and drift
errors resulting from variation ofrsss in fiber coil, and
then accumulation of errors occurs. These drifts are
submerged in the noise due to weak Sagnac effect.

Fractal and white noise are the main noise in FOG [7],
and some fractal noise may have deterministic relationship
with environmatal effect such as temperature. Accuracy is
limited by external environment noise and internal noise,
due to internal device operation [8].
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Yu and Stubberud presented an extend Kalman filter
(EKF) to incorporate MEMS sensors to increase the
accuracy [9]. The first recommended technology of
gyroscope was by Ploen and Bayard [10]. They presented a
virtual system of gyroscope that has four combined
sensors. To increase the accuracy of the netzotro
mechanical system (MEMS) gyroscope, a Kalman filter is
designed to combine measurement outputs from the
sensors of a gyroscope array.

Digital signal processing is important to detect signal
of Integrated Optic Gyroscope (I0G). The output of the
IOG contains many types of noise that exist in a wide
range of fregancies. The main noise types are shot noise,
thermal noise and relative intensity noise which all have
Gaussian distributions [11,12]. In the frequency domain,
the noise frequency spectrum is overlapped to the signal
frequency spectrum. The noise that exutside the band
of transmission can be filtered out by a normal filter, while
the noise that is overlapped with the signal cannot be
separated. So, to extract signal from noise, we can use
band pass filter (BPF). When IOG is rotated, a square
wave sigmal is detected from photodetector, which is
uncorrelated with noise. It can be easily separated.

The accuracy of the gyroscope can be improved by
removing the noise from the data. Characterization of
gyroscope sensors is more helpful with long term error
modeling to increase the accuracy of the sensor. Errors like
guantization error, drift rate ramp error, and angle random
walk error may appear [13].

Signals of the gyroscope that have errors can be
cleaned by applying wavelet denoising {14].
Computing te decompositions of the wavelet of the noisy
signal is the main idea to adjust the obtained coefficients of
the wavelet transform for noise reduction. Replacing
coefficients affected by noise by zero values or other
suitable values helps in reconstructittge signal using
these coefficients.

In this paper, we discuss types of gyroscopes,
gyroscope sensors, gyroscope signal and noise and will
improve the signal and reduce the noise using wavelet
denoising with various wavelet transforms and various
levels of wavelet decomposition. This wavelet denoising
technique has a high impact on accuracy of the sensor. A
hybrid technique based on Kalman filtering and wavelet
denoising is introduced in the paper to enhance gyroscope
signal quality.

Il. EASE OFUSE

This sectbn presents the main types of gyroscope such as
mechanical, optical and micelectremechanical systems
(MEMS).
This section presents the main types of
gyroscope such as mechanical, optical and
micro-electremechanical systems (MEMS).
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Fig. 1 Types of Gyroscopes

A. Mechanical

Mechanical gyroscope allows rotation in the 3D space
due to containing a free wheel mounted on two gimbals.
The free wheel works based on the conservation of angular
momentum principles. Hence, durin@g mechanical
gyroscope rotation, the orientation of the wheel stays
regular with changing the angle between nearby gimbals
[16]. An angle acquisition unit is used to pick the
orientation angle. Existence of moving parts is a
disadvantage for mechanical ggcope, which causes drift
of the output over time to friction

B. MEMS gyroscopes

Micro-electremechanical system (MEMS) gyroscopes
depend on the effect called Coriolis force. A MEMS
gyroscope consists of a mass attached to a solid frame by
springs. MEMS ge&sors are shown in Fig 1. They are
constructed using silicon microachining techniques.
MEMS gyroscopes usually have many advantages such as
small size, low cost, low power consumption, high
sensitivity, good linearity and high precision [17]. MEMS
gyroxopes depend on parameters, where mass m is
moving with velocity v and

Fc=2m( ¥1 v) ().
Coriolis Effect

Coriolis force effect transforms the sensor motion into
electical signal depending on the motion of the mass,
which is connected to a group of springs [18,19]. The
main idea of MEMS gyroscope depends on sensor
vibration. Whenever external force of rotation occurs, new
vibrations occur through the sensor [20]. Vda define the
Coriolis force as the physical quantity indicating inertia at
work on a revolving coordinate system.
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Fig. 2 MEMSSensor

C. Optical Gyroscopes

The main type of optical gyroscopes is Fiber Optic
Gyroscope FOG). The angular velocity of FOG can be
measured by light interference. A FOG contains a large
coil of optical fiber that represents the path of the optical
signal that exits the source of light. Then, a detector is
used to detect the signal. For meagyrtine rotation, we
have two beams entering to the fiber coil in opposite
directions. If the sensor is rotating in the same direction of
a beam of light source, the path will be longer for the light
beam path than the other path, as illustrated in Figure 2.
This process is called Sagnac effect [21]. Then, these
beams, which exit the yber
result of this combination, a phase shift depending on
length difference path for these beams is produced. After
combination of these beamsbaam is produced, which
has a strength depending on the angular velocity [23]. The
intensity of the combined beam should be measured to
find the angular velocity. Figure 3 shows a sample of
optical gyroscope.
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Fig. 3 Optical gyroscopes

Optical Gyroscope Signal:

We have two beams entering to the fiber coil in opposite
directions as shown in Fig 4. If the coil is rotating in the
same direction of a beam of light source, the path will be
longer for the light beam path than the other paths

path difference enables to measure the rotation rate of the

ETTPN are combined [22, 4].

Optical fiber light path

( -~

Beam Split

Inputfoutput signal

-_——’p

Beam Split

Figure 4. FOG Caoil

For the first path, the distance will be:

_2CR
c+Rg

Yot

ct_=20R -Rqgt_ (2

where R is the radius of the fiber coil, is the angular
velocity andc is the speed of the light beam.

For the other path, the distance will be:

ct, =20R R gt, Yct, 2PCR

SR 3

As



A. Kalman Filtering

The difference distance traveled by each signal is: We have 4 parts in the system tmprove the
performance of this type of gyroscope, i.e. the encoder
e 1 1 with DC motor to measure velocity and position, Kalman
- > 4) o , X
diL=c(t, t) ZocRe——— 7 filtering to filter out the signal of the gyroscope and a part
aéc-Rg) (c+Rqg)

to compensate for errors by adaptive compensator as
shown in Fig. 5.

_, € (C*tRg) (c-Rg) @ &R G (6)
dL =2ocR ; £ 2 @R
v g(CZ-RZqZ) (c R ) E o m ;
g
202 r + - A g
¢. Ra 0 ™~ 89
Signal of alman
Path difference: T wowr oscope alman |
Ae
2
dL = m (8) Adaptive J
C | Compensat;

Fig. 5. Block diagram of signal conditioning

where R is the radius of the fiber coil, is the angular wherer is the reference input andy, is the
velocity and is the speed of the light beam. .
angular displacement from encoder.

Table 1 Types of Gyroscopes 1 2
Type Mechanical MEMS Optical Wy _5( q- )d\Hé ©)
Component Spin axis, Springs and Fiber cail, ) .
gimbal and rotor mass detector, where vy is the measured angular velocity and
qoupler and o
light source g is the actual angular velocity is a scaling
o 2 .
Main idea Mechanical party Coriolis effect | Sagnac effect factor and ,whieiAss “ pancatise f a
based on move th> make measurement noise of the gyoopev, . Then
angles .
can get bias of the gyro by
Advantages Simple, cheap | Simple, more Highest @
accurate accuracy, d=v (10)
small size b
Disadvantage§ Bad accuracy Loss in Not simple Wherel?b is Gaussian noiseState space model
converting
motion to . .
electrical signal can be obtained at zero hias
| N
€ O &% @,
& 00 0 g M, @ @
€ U& 10 82 1 8‘79 9
I1l. TRADITIONAL TECHNIQUES FOR NOISE REDUCTI® IN éWg H € A g 2

GYROSCOPE SIGNALS

The main challenge of lowost gyroscope signal is &
noise, bias and scaling factor, all of these challenges 7 :[0 ]]
reduce accuracy of theensor. So, the calibration for this g
type of gyroscopes is needed before implementation. Thus, g
linear encoders can beadsto calibrate the sensor [24]

11)

K text and hic il e until after th From Fig. 5, removing the noise by using
eep your text and graphic files separate until after the T
text has been formatted and styled. Do re® bard tabs, Kalman filteing, we compensatdor the errors

and limit use of hard returns to only one return at the end DY computing the parameterssing nonlinear
of a paragraph. Do not add any kind of pagination least squaemethod. We comparthe encoder

anywhere in the paper. Do not number text he¢hds with the signal of the gyszope [25].
template will do that for you.

X = Ex+Fu+Gy (12)
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Z=Hx+v 13)

[%]
where X is the state estimation of Kalman filtering, which

is given by [9] :

] ] 5]

X=EXx M(@EZ HXx) (14)
where Kalman gairs,

M =PH'S" (15)

Then to get P from the below equation
P=EP +E 6QG MsSM (16)

The LE denote the signal from the Kalman
filtering, ¥ is a process nois®) is the gain of

the Kalman filter, S is the covariance matrix of
the state estimationQ is the covariance matrix

, G is a covariance matrix foobservation

(measurement) and e is the error.

where Q =5[0; 0 Jand S =1.1, and
M =g 2.1320.237B

Then state space for Kalman Filter is

e

% €1 o% ggmz g 9 0

To get the least squarerror (LSE)
%]

e=q, -¢ (18)
LSE=4"_@(t), - g1).) (19)

From equation (11), we obtain

Minimize

fa g=8".(.0), -,@)) (20)

where p=[a §

P = [ak Ql] (21)

wherek is circulation cycle anah is the number

of data samplesof the signal that et the
Kalman filter.
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The effects o is significant and it affecthe
overall performance of the filter. A basic way to
think of Q is that it is a weighting factor.
Considering a largerQ is equivalent to
considering a larger uncertainty in the state
equations, which is equivalent to trusting the
resut of these equations less, which effectively
means that the filter should correct more with
the measurement update

B. Wavelet Denoising

An efficient technique to reduce noise is using wavelet
denoising. Wavelet transform enables to accomplish
frequency andime signal analysis [26]. We can get

information with high resolution in the frequency and

time domains using continuous wavelet transforms.

Wavelets have many sorts. Here, we will discuss two
types: Haar and Daubechies wavelets [27]. We can
consider thatHaar wavelet is a particular case of the

Daubechies wavelet.

The simplest wavelet type is the Haar wavelet. A
discrete signal is resolved into two haifinals with the
Haar transform. The first half signal is a working
average or direction and the secdmalf signal is a
working difference or variation.

1 -1}
P(U)=1 4 and U =§( z+ ')
(22)

P(2) :;(z+ 2+7%)= ;(z+l)(l+ 7')=G,(2H,(2)

(23)
Then
Ho(z):%(l+ z1) (24)
Gy(2)=(z+1) (25)

Using these equations:
H,(2=2'G,(-2 and G,(2)=ZH,(-2) (26)

with k=1, we get:
Gl(z) = ZHO(' Z) = % Z(l' Z_l):%(z' 1) (27)

Equations (25) and (27) are not causal, but can

be implemented if the whole sighis available.
H,(2) =z'G,(- 2=z*(- z+1)= (z’l - 1)
(28)



P(z)=(@1+2z)*@1+az) (29) For the first thresholding type which is soft

Going through the factorization process with €& X 42 TH
1
a=1/2, weget: £ ) ! 2x-TH TH/2¢ x<TH (35)
1 7 TH+2x -TH<x¢-TH/2
Ho(z):é(- 22 +22+6+27- 77) (30) i o N <TH/2
1 1 x is the coefficients of the high frequency
==(z+2+ 1 L
G(2) 2(2 2tz ) (31) components and TH indicatése value ofthe
. , threshold
Using Eq 26 wittk=1, we get:
G,(2) = zH,(- 2)= 1 Z(— Z’-22+6-27"- Z'Z) (32) IV. THE PROPOSEDHYBRID TECHNIQUE FORNOISE
8 REDUCTION
1 The proposed technique to reduce the gyroscope noise
H.(2) = Z'lGO(- Z)=—Z'1(- zZ+2- Z'l) (33) is to merge wavelet denoising with Kalman filtering.
2 Wavelet denoising is shown in fig. 5. The wavelet
Xolz (12){%o@)* Xo(-2)} transform performscorrelation analysis. Therefore, the
output is expected to be maximal, when the input signal
l most resembles the mother wavelet.

—»| Ho(2) j G,(2) We suggest the utilization of several parallel
structures for more noise reduction as illustrated in Figs

(7.a) to (8.b). Thse structures are investigated and
compared in performance.

X@)  — Y@ Different realizations of the hybrid approaches

are considered. In the first one, both Haar wavelet
denoising and Kalman filtering are implemented in parallel

and the results are averaged
Ly Hy(2) e \ G,(2).

Noisy signal filtered signal

Xu(2) (112){Xa(2)+ (-2} ;
Kalman Filter

A 4

Fig 6. The wewand decompositiereconstruction filter

bank
We choose a high threshold for — averaging —
denoising, which is sufficient for large —— 3
iati H H H H aar wavele
variatiors of the noise in the signalThis > denoising

threshold will remove wst of he powerof the
noise Right now, thresholding is composed
two types The first thresholdingtype is hard
thresholdingandthe second thresholding type is
soft thresholding We use rigrsure thresholding In the second one, both Haar wavelet denoising and
technique, which is based on Stein's unbiased Daubechies wavelet denoising are implated in parallel
estimate of risk (quadratic loss function). We  and the results are averaged.

can get an estimate of the risk for a particular Haar Wavelet denoising
threshold valug. Minimizing the risks irt gives
a selection of the threshold ual [28] _— averaging |—p
For the first thresholding type which is hard

Fig (7.a) Parallel Hybridstructure of Kalman
filtering and Haar wavelet denoising

Daubechies Wavelet
X |X| 2TH denoising

(34) Noisy signal filtered signal

A 4

Ee.
|
fhard(X) = I
%

0 |x| <TH Fig (7.b) Parallelhybrid structure of Daubechies
wavelet denoising and Haar wavelet denoising
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In the third one, both Haawavelet denoising and
Kalman filtering are implemented in cascaded mode,
where the output of the Kalman filtering is the input of
Haar wavelet denoising.

Noisy signal filtered signal

Kalman Filter

A

Wavelet Denoisingf————»

Fig (8.a) Cascadellybrid structure of Kalman
filtering and Haar wavelet denoising

In the fourth one, both Haar wavelet denoising and
Kalman filtering are implemented in cascaded mode,
where the output of the Haar wavelet denoising is the input
of the Kalman filtering.

noisy signal filtered signal

Kalman Filter

Wavelet Denoising

Fig (8.b) Cascadettybrid structure of Haar wavelet
denoising and Kalman filtering

V. RESULTS

Table 2 shows the parameters of Kalman filtering and
wavelet denoising used in themilation experiments.

Table 2 [ataset specifications [25,26,28]

Parameter Definition

Process noise parameter of

Q Kalman filter (0.01, 0.9)

. 3 and 7 levels of wavelet
Decomposition Level
stages

I/P SNR Input signal to noise ratio

O/P SNR Output signato noise ratio

SNR Improvement (O/P SNRi I/P SNR)

Correlation Coefficient
(Cor-Co-Eff)

Correlation between output

signal and the input signal

Input Signal Output of gyroscope sensor

(simulated Gyroscope Signal) (deg / sec)

The input signal is # output of Gyroscope sensor during
the rotation of the sensor. The input signal is simulated as
shown in Fig (9) [29]. The noisy gyroscope signals at
input SNR=20 dB is shown in Fig (10). The noisy
gyroscope signals at input SNR=20 dB is shown in Fig
(11).
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Fig 9. I/P Gyroscopesignal
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Fig (10) I/P Gyroscope signal at SNRS dB
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Fig (11)I/P Gyroscope signal at SNR=20 dB
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We have usedHaar andDaubechies DB2wavelet
filters andKalman filteiing for denoising of th@yroscope
signal at different SNR Different values of filter
parameters are presented to show the effect of the chosen
value on the performance. One of disadvantages of
Kalman filtering is the longer processing time compared
to wavelet denoising.
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Fig 13 O/Psignal for Kalman filteng at Q=0.01
when input SNR= 20dB
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Fig 12 O/Psignal for Kalman filteng at Q=0.01
when input SNR= 2dB

To00 8000

Table 3 Kalman filtering output metric values

Filter Parameters| SNR SNR Improve Cor-

/P Oo/P -ment Co-eff
Ke}lman Q=0.9 -20 1.3796 | 213796 | 0.2563
Proggts"s’ oise |__Q709 10 | 11.3831 | 21.3831 | 0.6746
Paramesr Q=0.9 10 29.3575 | 19.3575 | 0.9901
Q=1{.01,9} Q=0.9 20 33.5419 | 13.5419 | 0.9962
Q=0.01 -20 10.9018 | 30.9018 | 0.6238
Q=0.01 -10 20.3619 | 30.3619 | 0.9261
Q=0.01 10 30.5736 | 20.5736 | 0.992
Q=0.01 20 30.8919 | 10.8919 | 0.9930

Table 3 reveals that the best value in improvement
30.9018 dB at inpuSNR =-20 dB and processioise

is

Q=0.01 and the best correlation coefficient is at input

SNR =20 dB and process noise Q=0.01
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Fig 15. O/Psignal for Haar wavelet at 7 levels of
decomposition
when input SNR=20 dB

8000

Table 4 Haar Wavelet filter output metric values

Filter Param | SNR SNR O/P Improve Cor-
eters I/P ment Co-eff

Haar 7Haar -20 -4.9623 15.0377 0.1409
Wavelet THaar -10 7.3308 17.3308 0.4885
7Haar | 10 42.3129 323129 | 0.9995
Decomposition| 7Haar | 20 45.2884 252884 | 0.9997
Levels(37) "3Haar | 20 | 5.0597 | 149403 | 0.1331
3Haar -10 6.5016 16.5016 0.4408

3Haar 10 34.1191 24.1191 0.9967

3Haar 20 44.1147 24.1147 0.9996

Table 4 reveals that the best value in improvement is
32.3129 dBat input SNR= 10 dB and number of
decomposition levels=7. The best correlation coefficient is
at input SNR=20dB and number of decomposition
levels=7 due to the low noise level.
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Fig 17. O/Psignal for DB2 wavelet at 7 levels of
decompositiorwhen input SNR=20 dB
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Table 5Daubechies wavelet filter output metric values

T T T T T T T

noisy signal
kalman/wavelet outpu
simulated signal

Gyro Signal

20 L L L L L L n

1000 2000 3000 4000

iterations
Fig 18. O/Psignal for parallel mode Ha&rKalman at
Q=0.01 and 7 levels of decomposition when input SNR=
20 dB

5000 6000 7000 8000

Fig 19. O/Psignal for parallel mode HaarKalman at
Q=0.01 and7 levels of decomposition when input
SNR=20dB

Table6 Parallel Mode HaaKalmanoutput metric values

Filter Parameter§ SNR | SNR | Improvement| Cor- Filters Parameters SNR| SNR improvement Cor-
e | op Co-eff wp | op P Co-eff
7DB2 | 20 | -48243| 151757 | 0.1245 7;"3"";; 20 | -5.0490 | 14951 | 0.1414
Daubichies 7DB2 10 | 7.3865 | 17.3865 | 0.4865 ZHaar
fpo 7DB2 10 | 37.4063 274063 | 0.9984 7DB2 -10 | 7.2111 | 17.2111 | 0.4914
Decomposition|  7DB2 20 | 36.6649| 16,6649 | 0.9981| | paar wavelet 77F||3a|3a2F 10 | 39.7058| 29.7058 | 0.9991
Levels(3,7) | 3DB2 | -20 | -48961| 151039 | 0.1416 with e
3DB2 -10 | 6.9405 16.9405 | 0.4739 Daubechies 7082 20 | 42.0344| 22.0344 | 0.9995
Wavelet
3DB2 10 | 33.6526 D
23.6526 | 0.9963| | pocomposition 3’3%‘18""; 20 | -49710| 15.029 | 0.1368
3DB2 20 | 419701 219701 | 0.9995 Levels
(3,7 3’3%‘18""; 10 | 7.2745 | 17.2745 | 0.4931
Table 5 reveals that the best value in improvement is 3H
: : aar 10 | 34.8872| 24.8872 | 0.9972
27.4063 dB isat input SNR= 10 and number of 3DB2
decomposition levels=7. The best correlation coefficient is 33%3865 20 | 44.1575| 241575 | 0.9997
at input SNR=20 dB and number of decomposition

levels=3 due to low noise level and more levels of
decompositions leading to more noise.
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