
Menoufia J. of Electronic Engineering Research (MJEER), Vol. 29, No. 2, Jul. 2020

 106

Towards Efficient FPGA Implementation of Elliptic Curve Crypto-

Processor for Security in IoT and Embedded Devices

Shaimaa Abu Khadra

Al-Mahala High Institute of

Engineering, Al-Mahala

Salah Eldin S. E. Abdulrahman

Dept. of Computer Sci. &

Engineering, Faculty of

Engineering, Menoufia University.

Nabil A. Ismail
Dept. of Computer Sci. &

Engineering, Faculty of

Engineering, Menoufia University.

Abstract— An Elliptic Curve Crypto-Processor (ECCP) is

a favorite public-key cryptosystem due to its small key

size and its high security arithmetic unit. It is applied in

constrained devices which often run on batteries and have

limited processing, storage capabilities and low power.

This research work presents an effective ECCP

architecture for security in IoT and embedded devices. A

finite field polynomial multiplier takes the most

implementation effort of an ECCP because it is the most

consuming operation for time and area. So, the objective

is to implement the main operation of Point Multiplication

(PM) 𝑄 = 𝑘𝑃 using FPGA. The aim is to obtain the

optimal registers number for an area optimization of

ECCP architecture. Moreover, it proposes a time

optimization of ECCP based on the liveness analysis and

exploiting forward paths. Also, a comparison between

sequential and parallel hardware design of PM based on

Montgomery ladder algorithm is provided.

The developed ECCP design is implemented over

Galois Fields GF (2
163

) and GF (2
409

) on Xilinx Integrated

Synthesizes Environment (ISE) Virtex 6 FPGA. In case of

GF (2
163

), this work achieved an area saving that uses

2083 Flip Flops (FFs), 40876 Lookup Tables (LUTs) and

19824 occupied slices. The execution time is 1.963 s

runs at a frequency of 369.529 MHz and consumes

5237.00 mW. In case of GF (2
409

), this work achieved an

area saving that uses 8129 Flip Flops (FFs), 42300

Lookup Tables (LUTs) and 18807 occupied slices. The

execution time is 29 s runs at a frequency of 253.770

MHz and consumes 2 W. The obtained results are highly

comparable with other state-of-the-art crypto-processor

designs. The developed ECCP is applied as a case study

of a cryptography protocol in ATMs.

Keywords:

Elliptic Curve Crypto-Processor, Public-key

Cryptosystems, IoT and Embedded Systems Security,

Optimal FPGA Implementation.

1. INTRODUCTION

With advanced technology, there is a necessity of secure

multiple means of communications and data transmission

between devices [1]. The insurance is importance for

embedded systems that found everywhere and ranged from

light devices to satellites around the earth [2]. Each

embedded system composes many devices which connected

with each other. Embedded systems contain microprocessors

with modern devices technology like WIFI, GSM, GPS,

Bluetooth or other devices that used in communication and

remote control [3]. The core operation in a public key

cryptosystem depends on encrypt data using a public key and

decrypt data using a private key.The ECC is one of the

public key schemes that use the finite field (Galois Field

(GF)) arithmetic to do its operations. Fig. 1 illustrates the

ECCP layers architecture. So, it is useful to optimize the

finite field operations for ECCPs in order to reduce area and

power consumption [8]. The efficiency of the ECC

implementation relies on scalar multiplication or Point

Multiplication (PM) which is built on group and Finite Field

(FF) operations [4]. The field multiplication and field

inversion have direct impact on speed and performance of

the overall ECCP implementation.

The traditional way of implementing the ECC and the

finite field algorithms is software only, running on general-

purpose processors, microcontrollers, multicore/manycore

(MC) or on digital-signal processors [4].In practice, the

decisive encounter of software executions of ECC is the

latency [9] or potential owing to the word close calculations

essential and recurrent memory processes. Various ECC

software implementation on MC architectures have been

presented to enhance ECC performance by improving

algorithms primary the PM methods. For example, Albahri

et. al. [9] proposed an ECC PM over GF(2
163

) on Xmos kit

IDE founded on executing a vertical parallelization on finite

field Point Doubling (PD) and Point Addition (PA) group

steps. They also proposed a modification to the left-to-right

double and add binary PM to eliminate data hazards.

Nevertheless, the desired small key size, low area, lower

memory requirements, faster encryption and decryption, less

power consumption, and lower bandwidth necessities

recommend ECC for hardware cryptosystem processor

synthesizes. This work is concerned with the implementation

of an efficient ECCP with a special scalar multiplier, fully

pipelined, parallel, and self-controlled architecture. Its

intention is to enhance the ECCP hardware design targeted

for resource constrained, IoT, and embedded devices.

The proposed ECCP hardware design presented in this

work is focused over binary Galois fields GF(2
163

) and

GF(2
409

). There are numerous algorithms that have been

reported to implement PM, some of them are designed to

reduce area and others to save the ECCP time. The main

contribution of this work may be stated in the following

points:

 Implementing algorithms such as Montgomery [13-17],

Itoh-Tsujii [12, 15] and Karatsuba [18-21] for

optimizing EC and finite field operations to improve

 107

speed, throughput, and/or computation time. The

implementation is performed over GF2
163

 and GF2
409

 Optimizing area requirements by minimizing the

Register File (RF) size in ECCP.

 Presenting a low-power method to the proposal of

embedded ECCP architecture that achieves the

bypassing and substitutes the power cost of transfer

short-lived variables to/from RF.

 Design and apply the technique for N time squarer (x
2
)

N

for GF2
163

 and GF2
409

 and compared with other

techniques which depend on using glitch free clock

switch.

 Comparison between sequential and parallel architecture

based on liveness analysis and forward path in the

implementation of ECCP PM algorithm.

This research paper is planned as follows: the next

section starts a mathematical preliminary that include

arithmetic procedures for binary Galois fields. It also

presents elliptic curve arithmetic algorithms, a brief

introduction on scalar multiplication, projective

representation and PM costs. The state-of-the-art is existing

in section three. Section four provides area/time

optimization approach. The implementation results and

discussion are detailed in section five. Section six provides a

case study of cryptography protocol. The conclusion and

future direction are described in section seven.

2. ECC ARITHMETIC PRELIMINARY

2.1 BINARY GALOIS FIELD 𝟐𝐦 ARITHMETIC

This section focuses on Galois fields of order 2𝑚 arithmetic

(𝐺𝐹 2𝑚) which is endorsed byNISTfor EC Digital

Signature Algorithm (ECDSA) application [2]. A generic

standard binary ECcan be represented as:

𝑬 𝑮𝑭 𝟐𝒎 : 𝒚𝟐 + 𝒙𝒚 = 𝒙𝟑 + 𝒂𝒙𝟐 + 𝒃

 (1)

where 𝑎, 𝑏 are in 𝐺𝐹 2𝑚 and𝑏 ≠ 0.

For special cases when m = 163 or 409, the hardware circuit

for performing addition needs exactly 163 or 409 XOR

gates respectively.

An ECCP is designed and build based on the main

operation PM (𝑄 = 𝑘 𝑃 = 𝑃 + 𝑃 + ⋯+ 𝑃) and it can be

done using repeated Point Addition (PA) and Point

Doubling (PD), for example 11𝑃 = 2 5𝑃 + 𝑃 =
2 2 2𝑃 + 𝑃 + 𝑃 . The Lopez-Dahab (LD) projective

coordinates are used to calculate the PM of the binary ECCP

in Eq. (1).

All operations of the PM require finite field operations

like inversion, squarer, polynomial multiplier and addition

[4]. This work adopted with GF 2163 and GF 2409 binary

fields. The GF(2
m
) is more suitable for hardware design in

which the addition operation requires only XOR unit and

eliminates the need for carry propagation. The square

operation is done with no area and it is meant by inserting

zero between bits. A polynomial multiplier may be

implemented in a bit serial or a bit parallel multiplier [11].

A bit serial multiplier is a good choice for area but a bit

parallel is a good choice for time. Both the polynomial

squarer and the polynomial multiplier are needed to follow

with irreducible polynomial. The irreducible polynomial for

a(z) mod p(z) was meant by the reminder of a long division

of a(z) by p(z).The irreducible polynomial was implemented

in hardware by using shift and XOR operation. Finally, the

inversion operation is the most complicated unit as it takes a

large area and has a slow implementation. The Itoh-Tsujii

[12] algorithm is one of the inversion algorithms that

convert the inversion operation to run based on two finite

field units which are multiplier and squarer units. The

inversion operation takes only nine multiplications for

GF 2163 or ten multiplications for GF 2409 and (m-1)

repeated squaring operations.

FIELD ADDITION OPERATION

In a binary Galois Field 𝐺𝐹 2𝑚 or (𝔽2𝑚) the polynomial

addition operation is executed bitwise with no carry

propagation (Exclusive-OR or XOR). For example, let A

and B are represented as:

𝑨 𝒙 = 𝒂𝒊𝒙
𝒊𝒎−𝟏

𝒊=𝟎 , 𝑩 𝒙 = 𝒃𝒊𝒙
𝒊𝒎−𝟏

𝒊=𝟎 .

Then,

𝑪 𝒙 = 𝒄𝒊𝒙
𝒊

𝒎−𝟏

𝒊=𝟎

= 𝑨 𝒙 + 𝑩 𝒙

= 𝒂𝒊 + 𝒃𝒊 𝒎𝒐𝒅 𝟐 𝒙𝒊𝒎−𝟏
𝒊=𝟎 (2)

FIELD SQUARING OPERATION

Squaring a field element in 𝔽2𝑚 represented via a

polynomial basis, 1, 𝑥, 𝑥2 , … , 𝑥𝑚−1 , is ruled by the

following equation.

𝑨𝟐 𝒙 = 𝑨𝒊𝒙
𝒊

𝒎−𝟏

𝒊=𝟎

𝟐

= 𝑨𝒊𝒙
𝟐𝒊

𝒎−𝟏

𝒊=𝟎

𝒎𝒐𝒅 𝑭 𝒙

Hence, A2(x)in 𝔽2163 , for example, is

𝑨𝟐 𝒙 = 𝒂𝟏𝟔𝟐𝒙
𝟏𝟔𝟎 + ⋯+ 𝒂𝟖𝟑𝒙

𝟐 + 𝒂𝟖𝟐 𝒙
𝟏𝟔𝟒𝒎𝒐𝒅 𝑭 𝒙

𝑨𝑯

+ 𝒂𝟖𝟏𝒙
𝟏𝟔𝟐 + ⋯+ 𝒂𝟏𝒙

𝟐 + 𝒂𝟎
𝑨𝑳

 (3)

comprises three mathematical stages: (i) expand AL part with

interleaved 0’s; (ii) reduce the AH part with the reduction

polynomial

𝑭 𝐱 = 𝐱𝟏𝟔𝟑 + 𝐱𝟕 + 𝐱𝟔 + 𝐱𝟑 + 𝟏;

and (iii) add the two parts: AH, AL. However, for hardware

implementations, the use of Eq. (3) enables these three steps

to be combined in four level XOR gates if the reduction

polynomial has a smaller second-highest degree, which is

the case here.

FIELD MULTIPLICATION OPERATION

A few polynomial basis bit-serial, digit-serial, and bit-

parallel finite field multipliers have been proposed in [4].

The multiplication of two binary polynomials A and B may

be simplified as:

𝑪 𝐱 = 𝑨 𝐱 · 𝑩 𝐱 𝒎𝒐𝒅 𝑭 𝐱

= 𝑨 𝐱 𝒃𝒊
𝒎−𝟏

𝒊=𝟎
𝐱𝒊 𝒎𝒐𝒅 𝑭 𝐱

= 𝒃𝒊
𝒎−𝟏

𝒊=𝟎
𝑨 𝐱 𝐱𝒊 𝒎𝒐𝒅 𝑭 𝐱

where𝐹 x is the reduction binary polynomial of degree

m.Therefore,

𝑪 𝐱 = (𝒃𝟎𝑨 𝐱 + 𝒃𝟏𝑨 𝐱 𝐱 + 𝒃𝟐𝑨 𝐱 𝐱
𝟐 + ⋯

 108

+𝒃𝒎−𝟏𝑨 𝐱 𝐱
𝒎−𝟏)𝒎𝒐𝒅 𝑭 𝐱

 (4)

Algorithm 1 shows a well-suited procedure for hardware

implementation of Eq. (4) when area is constrained. The bit-

parallel type multipliers are best suited for applications that

require fewer clock cycles, i.e. high speed but more space.

Algorithm 1 shows that field multiplication in 𝐺𝐹 2𝑚 is

computed by mainly two operations; binary polynomial

multiplication 𝐶 = 𝐴 x · 𝐵(x) and 𝑚𝑜𝑑 𝐹(x) reduction

polynomial 𝐹(x) . This work adopts binary Karatsuba-

Ofman [18, 19].

REDUCTION OPERATION

The reduction process is required by the square and

multiplication operations as depicted in Eq. (3) and Eq. (4)

respectively. The outcome of the reduction process is to

decrease the order of subsequent values from greater than 𝑚

to fewer or equal to 𝑚.𝑪 𝒙 = 𝑪 𝒙 𝒎𝒐𝒅 𝑭(𝒙)

KARATSUBA-OFMAN MULTIPLIER [18 - 19]

Binary Karatsuba-Ofman multiplier was introduced in [18,

19] which is appropriate for 𝐺𝐹 2𝑚 where 𝑚 is a

predetermined number. Let 𝐴, 𝐵 two elements in 𝔽2𝑚

where:

𝑨 = 𝒂𝒊𝒙
𝒊

𝒎−𝟏

𝒊=𝟎

= 𝒂𝒊𝒙
𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

+ 𝒂𝒊𝒙
𝒊 = 𝒙

𝒎

𝟐 𝒂𝒊+𝒎

𝟐
𝒙𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

+ 𝒂𝒊𝒙
𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

= 𝒙
𝒎

𝟐𝑨𝑯 + 𝑨𝑳

𝒎−𝟏

𝒊=
𝒎

𝟐

and

𝑩 = 𝒃𝒊𝒙
𝒊

𝒎−𝟏

𝒊=𝟎

= 𝒃𝒊𝒙
𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

+ 𝒃𝒊𝒙
𝒊

𝒎−𝟏

𝒊=
𝒎

𝟐

= 𝒙
𝒎

𝟐 𝒃𝒊+𝒎

𝟐
𝒙𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

+ 𝒃𝒊𝒙
𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

= 𝒙
𝒎

𝟐𝑩𝑯 + 𝑩𝑳

The polynomial product is given as

𝑪 = 𝒙𝒎𝑨𝑯𝑩𝑯 + 𝑨𝑯𝑩𝑳 + 𝑨𝑳𝑩𝑯 𝒙
𝒎

𝟐 + 𝑨𝑳𝑩𝑳

 (5)

𝑪 = 𝒙𝒎𝑨𝑯𝑩𝑯 + 𝑨𝑳𝑩𝑳

+(𝑨𝑯𝑩𝑯 + 𝑨𝑳𝑩𝑳 + (𝑨𝑯 + 𝑨𝑳)(𝑩𝑳 + 𝑩𝑯))𝒙
𝒎

𝟐

(6)

𝑪 = 𝒙𝒎𝑪𝑯 + 𝑪𝑳

Algorithm 2 shows a modified binary Karatsuba

multiplier [19].

2.2 ELLIPTIC CURVE ARITHMETIC

Arithmetic of EC is defined in terms of underlying field

operations [4] which are described in section 2.1. In its

simplest form a point on an EC, in affine coordinate, is

distinct as (𝑥, 𝑦) of 𝐺𝐹 2𝑚 that satisfying Eq. (1) with

𝑏 = 1. Since Point Addition (PA) algorithms used in this

work are explicitly involve 𝑎 without b, so we do not have

to store 𝑏. However, Point Doubling (PD) is a special case

of point addition. Point Multiplication (PM), e.g., 𝑄 = 𝑘𝑃 is

the accumulation of 𝑘 duplicates of point 𝑃 hence:

𝑸 = 𝒌𝑷 = 𝑷 + 𝑷 + ⋯+ 𝑷
𝒌 𝒄𝒐𝒑𝒊𝒆𝒔

For a large 𝑘, PM can be done using repetitive PAs and

PDs.

POINT MULTIPLICATION (PM) [4, 20 - 23]

Elliptic curve points can be represented using various

coordinate systems such as affine or projective

representations [21, 22]. For each such system, the speed of

PAs and PDs is different [22]. An EC point in projective

coordinate is represented in 𝐺𝐹 2𝑚 as 𝑃 = (𝑋, 𝑌, 𝑍) . To

convert the affine point (𝑥, 𝑦) to projective coordinates, Z is

simply set to 1, i.e., (𝑥, 𝑦, 1) [21]. Projective coordinates are

efficient for inner computations, however, a conversion

operation from projective to affine is needed before the

transmission step. The costs of addition, squaring,

multiplication, and inversion operations in 𝔽2𝑚 for various

coordinates are listed in Table 1 [23].

This work adopts the projective coordinates presented by

Lopez-Dahab (LD) [14]. According to Lopez-Dahab

projective point representation 𝑃 = 𝑋, 𝑌, 𝑍 , 𝑍 ≠ 0 adapts

the affine representation 𝑃 = (𝑋 𝑍 , 𝑌 𝑍2) . Hence, in

projective coordinates, the binary EC curve in Eq. (1) is

attained by substituting x and 𝑦 with 𝑋 𝑍 and 𝑌 𝑍2 [14].

Algorithm 3 is the right-to-left type of the elementary

repetitive double/add method for point multiplication [4]

with the aid of LD method for PA (Algorithm 4) and PD

(Algorithm 5).

LOBEZ-DAHAB (LD) EXPLICIT FORMULAS [17, 22]

In Lopez-Dahab (LD) projective point [17, 22] coordinates

Algorithm 4 and Algorithm 5 provide ECC explicit

intermediate variables specified formulas for both PA and

PD group operations, respectively.

As a means of avoiding an expensive field inversion

operation, it is convenient to work with the projective

coordinates presented by LD. Therefore, for a given k and m

the overheads of implementing a scalar multiplication using

Algorithm 3 [21] is approximated as:

𝑵𝒃𝒊𝒏𝒂𝒓𝒚 = 𝒎𝑵𝒅𝒐𝒖𝒃𝒍𝒆 + (𝒎 𝟐)𝑵𝒂𝒅𝒅

BASIC POINT MULTIPLICATION COSTS

Approximations for point multiplication costs are existing in

terms of curve operations (PAs and PDs) [4], and the

equivalent field operations (MUL, SQR, ADD and INV).

Convert from affine to projective costs 2SQR + 1ADD. Point

addition and doubling in projective coordinates cost 14MUL

+ 4SQR + 9ADD and 5MUL + 4SQR + 5ADD operation

counts respectively. The overall overhead of coordinates

conversion from projective to its corresponding affine [21]

may be 2MUL + 1INV + 1SQR.

 109

Fig. 1: The PM of ECCP Layers architecture.

Algorithm 1 bit-serial binary polynomial multiplication (low to high) in 𝔽2𝑚 [4], [20]

𝐶 x = 0

𝐶 x = 𝑏𝑖𝐴 x + 𝐶 x
𝐴 x = 𝐴 x · x 𝑚𝑜𝑑 𝐹 x

Input: Two elements 𝐴 x 𝑎𝑛𝑑 𝐵 x ∈ 𝔽2𝑚 , a reduction polynomial F(x) of m degree,

Output: C(x)∈ 𝔽2𝑚 where C(x) = A(x) · B(x) mod F(x).

fori = 0 to m - 1 do

end-for

 return 𝐶 x 𝑚𝑜𝑑 𝐹(x) //Reduction operation

Algorithm 2 Modified binary Karatsuba multiplier in 𝐺𝐹 2𝑚 [18]

𝑀𝐴𝑖
= 𝐴𝑖

𝐿 + 𝐴𝑖
𝐻

𝑀𝐵𝑖
= 𝐵𝑖

𝐿 + 𝐵𝑖
𝐻

Input: Two elements 𝐴, 𝐵 ∈ 𝔽2𝑚 with an arbitrary m, where 𝐴 = 𝑥
𝑚

2 𝐴𝐻 + 𝐴𝐿, 𝐵 = 𝑥
𝑚

2 𝐵𝐻 +
𝐵𝐿

Output: C = AB a polynomial of2m-1 coordinates, and 𝐶 = 𝑥𝑚𝐶𝐻 + 𝐶𝐿

procedure BK (C, A, B)

begin

 ℓ = [log2 m]

ℎ = m – 2
ℓ
;

 if (ℎ == 0) then C = Kmul 2
ℓ
(A, B) return;

 for i from 0 to ℎ -1 do

 end;

mul2ℓ(𝐶𝐿 , 𝐴𝐿 , 𝐵𝐿);

mul2ℓ(𝑀,𝑀𝐴 , 𝑀𝐵);

 BK(𝐶𝐻 , 𝐴𝐻 , 𝐵𝐻);

 for i from 0 to 2ℓ -2 do𝑀𝑖 = 𝑀𝑖 + 𝐶𝑖
𝐿 + 𝐶𝑖

𝐻 end;

 for i from 0 to 2ℓ -2 do𝐶ℓ+1 = 𝐶ℓ+1 + 𝑀𝑖end;

end;

 110

Table 1: Cost of PM operations [23]

Operation Coordinates
Cost

Add(A) Mul(M) Inv (I) Sqr (S)

PA 𝒜 8 2 1 1

PD 𝒜 6 2 1 1

Negation 𝒜 1 0 0 0

PA Ƥ 8 16 0 2

PD Ƥ 5 8 0 4

Negation Ƥ 1 0 0 0

PA ℒ𝒟 9 13 0 4

PD ℒ𝒟 5 5 0 4

Negation ℒ𝒟 1 1 0 0

Montgomery Ƥ 3 6 0 4

Montgomery Ƥ ⟼ 𝒜 6 10 1 6

Mapping Ƥ ⟼ 𝒜 0 2 1 0

Mapping ℒ𝒟 ⟼ 𝒜 0 2 1 0

Algorithm 3 Bit-serial scalar multiplication [4] using LD coordinates for PA and PD [14].

Input: 𝑃 ∈ 𝐸 𝐺𝐹 2𝑚 , 𝑘 = 𝑘𝑖2
𝑖𝑡

𝑖=0

Output: 𝑘𝑃

1: 𝑄 ← ∞

2: fori = 0 to t - 1 do

 2.1 if𝑘𝑖 = 1 then

 2.2 𝑄 ← 𝑄 + 𝑃

 2.3 end if

 2.4 𝑃 ← 2𝑃

3: end for

4: return 𝑄 = 𝑘𝑃

Algorithm 4 Lobez-Dahab projective coordinate for point addition (PA) in 𝑮𝑭 𝟐𝒎 .

𝐸 𝐺𝐹 2𝑚 : 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑏 ≠ 0

Input: 𝑃 = (𝑋1 , 𝑌1 , 𝑍1) and 𝑄 = (𝑋2, 𝑌2 , 𝑍2) in LD coordinates on

Output: 𝑃 + 𝑄 = 𝑋3 , 𝑌3, 𝑍3 in LD coordinates.

 1: 𝐴 = 𝑋1 ∗ 𝑍2

 2: 𝐵 = 𝑋2 ∗ 𝑍1

 3: 𝐶 = 𝐴2

 4: 𝐷 = 𝐵2

 5: 𝐸 = 𝐴 + 𝐵

 6: 𝐹 = 𝐶 + 𝐷

 7: 𝐺 = 𝑌1 ∗ 𝑍2
2

 8: 𝐻 = 𝑌1 ∗ 𝑍1
2

 9: 𝐼 = 𝐺 + 𝐻

10: 𝐽 = 𝐼 ∗ 𝐸

11: 𝑍3 = 𝐹 ∗ 𝑍1 ∗ 𝑍2

12: 𝑋3 = 𝐴 ∗ 𝐻 + 𝐷 + 𝐵 ∗ (𝐶 + 𝐺)

13: 𝑌3 = 𝐴 ∗ 𝐽 + 𝐹 ∗ 𝐺 ∗ 𝐹 + 𝐽 + 𝑍3 ∗ 𝑋3

Algorithm 5 Lobez-Dahab projective coordinate for point doubling (PD) in 𝑮𝑭 𝟐𝒎 .

𝐸 𝐺𝐹 2𝑚 : 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑏 ≠ 0

Input: 𝑃 = (𝑋1 , 𝑌1 , 𝑍1) in LD coordinates on

Output: 2𝑃 = 𝑋3 , 𝑌3, 𝑍3 in LD coordinates.

 1: 𝐴 = 𝑌2 ∗ 𝑍1
2 + 𝑌1

 2: 𝐵 = 𝑋1 + 𝑋2 ∗ 𝑍1

 3: 𝐶 = 𝐵 ∗ 𝑍1

 4: 𝑍3 = 𝐶2

 5: 𝐷 = 𝐵2(𝐶 + 𝑎 ∗ 𝑍1
2

 6: 𝐸 = 𝐴 ∗ 𝐶

 7: 𝑋3 = 𝐴2 + 𝐷 + 𝐸

 8: 𝐹 = 𝑋3 + 𝑋2𝑍3

 9: 𝐺 = 𝑋2 + 𝑌2 ∗ 𝑍3
2

10: 𝑌3 = 𝐸 + 𝑍3 ∗ 𝐹 + 𝐺

 111

Algorithm 6 Point multiplication using Montgomery ladder [10, 17].

Input: 𝑘 = (𝑘𝑚−1, 𝑘𝑚−2, … , 𝑘2, 𝑘1, 𝑘0)2 with 𝑘𝑚−1 = 1, 𝑃 = (𝑥, 𝑦) ∈ 𝐸 𝐺𝐹 2𝑚

Output: 𝑄 = 𝑥𝑘 , 𝑦𝑘 = 𝑘 · 𝑃

1- Set 𝑋1 = 𝑥, 𝑍1 = 1, 𝑋2 = 𝑥4 + 𝑏, 𝑍2 = 𝑥2

2- for 𝑖 = 𝑚 − 2 to 0 do

2-1 If 𝑘𝑖 = 1 then

 𝑋1, 𝑍1 = Add 𝑋1, 𝑍1 , 𝑋2, 𝑍2, 𝑥 ;
 𝑋2, 𝑍2 = Double (𝑋2, 𝑍2, 𝑏);

 2-2 else

 𝑋2, 𝑍2 = Add 𝑋2, 𝑍2 , 𝑋1 , 𝑍1, 𝑥 ;
 𝑋1, 𝑍1 = Double (𝑋1 , 𝑍1, 𝑏);

 end if;

 end for;

3- Convert from projective to affine

𝑥𝑘 =
𝑋1

𝑍1
=

𝑥𝑍2𝑋1

𝑥𝑍1𝑍2
 (7)

𝑦𝑘 =
 𝑥+𝑥𝑘 [𝑋1+𝑥𝑍1 𝑋2+𝑥𝑍2 + 𝑥

2+𝑦 𝑍1𝑍2]

𝑥𝑍1𝑍2
+ 𝑦 (8)

4- Return Q

Algorithm 7 Inversion using Itoh-Tsujii algorithm (ITA) in 𝔽2𝑚

Input: 𝐴 = (𝑥𝑍1𝑍2) ∈ 𝐺𝐹(2𝑚)

Output: 𝐴−1

1: 𝑟 ← (2𝑚 − 1)

2: 𝐴𝑟 = 𝐴𝑟−1 . 𝐴

3: 𝐴−1 = (𝐴𝑟)−1 . 𝐴𝑟−1

4: return 𝐴−1

Table 2 PM state-of-the-art

Implementation ECCP Optimization
Point (Scalar)

Multiplication
FPGA

M. Imran et. al., 2018

[7]

Three architectures-based

execution time vs reliability-

security algorithm

Modified PA and PD for

Montgomery PM

Virtex 5, Virtex 6,

and Virtex 7.

B. Rashidi et. al. 2016

[18]

Parallel

Low critical data path delay

Montgomery ladder

GF(2
163

) & GF(2
233

)
Virtex 5

M.S. Albahriet. al. 2016

[9]

Parallel on multi-core

microcontroller

Modified Left-to-right

binary PM in L-D

Xmos multi-core

microcontroller

Z. Khan et.al. 2015 [25]

Efficient memory unit.

Pipelined digit-serial multiplier

Parallelization

LD modified Montgomery

PM algorithm

1476 slices on

Virtex 4

LX2512

Lijuan and Shuguo,

2016 [28]

Modified Montgomery ladder

Pipeline
Three-stage pipeline

Virtex 4

XC4

B. Rashidi et. al. IET

2017 [12]

P. Zode et. al. 2017 [29]

Tree structure

Virtex 4

ITA time 0.262 us

for GF(2
163

)

Khan and Benaissa

2017 [25]

1 and 2 stages pipelined full-

precision n

Modified L-D Montgomery

ladder

Virtex 4,

Virtex 5,

Virtex 7

Loi&Ko 2016 [10]
Parallel FFAU and ECPM on

Koblitz

Parallelization of L-D

ECPM for Koblitz curves
Virtex 5

 112

Fig. 2: The previous work comparison

Fig. 3: A top-level architecture for ECCP

Fig. 4: The proposed ECCP architecture design

Fig. 5: Optimized Point Addition/Doubling unit

 113

POINT MULTIPLICATIONUSING MONTGOMERY LADDER

[10, 22]

One of the most efficient point multiplication which is based

on LD projective PA and PD group operations is

Montgomery ladder scalar multiplication [10, 22].

Algorithm 6 depicts an EC scalar multiplication method

using Montgomery ladder where the curve point P = (x, y),

Q = kP represented by (xk , yk) . PA Za , Xa =
Add(X1 , Z1, X2 , Z2, x) is given by:

𝐙𝐚 = (𝐗𝟏𝐙𝟐 + 𝐗𝟐𝐙𝟏)𝟐 and

 𝐗𝐚 = 𝐱𝐙𝐚 + (𝐗𝟏𝐙𝟐)(𝐗𝟐𝐙𝟏)

and for P 𝐗𝐝, 𝐙𝐝 = 𝐝𝐨𝐮𝐛𝐥𝐞(𝐗𝐢, 𝐙𝐢, 𝐛)

we have: 𝐙𝐝 = 𝐗𝐢
𝟐𝐙𝐢

𝟐 and 𝐗𝐝 = 𝐗𝐢
𝟒 + 𝐛𝐙𝐢

𝟒

Algorithm 6 shows an EC point multiplication using the

Montgomery ladder method [17]. In algorithm 6 only one

inversion operation, INV xZ1Z2 = (xZ1Z2)−1 is required.

INVERSION ALGORITHMUSING ITOH-TSUJII (ITA)

In Eq. 7 and Eq. 8 the inversion (xZ1Z2)−1 is employed

using Itoh-Tsujii algorithm (ITA) reported in [12, 15, 17,

19]. The hardware implementation of the inversion inside

conversion step in several research work has often use ITA

for the point multiplication which is adopted in this work as

well. ITA is summarized in Algorithm 7:

3. RELATED WORK

Several FPGA based hardware implementations for elliptic

curve cryptosystem processor (ECCP) were suggested in

literature [17 - 27] few of them aimed for low-end devices

[22]. However, there is an equally important need for stand-

alone ECCP engines in small constrained devices, like

sensor networks and mobile devices [14]. Most

implementations focus on minimizing speed and area of the

PM on binary EC [17]. A pipeline digit-serial GF multiplier

was used in Montgomery ladder GF(2
163

) & GF(2
233

) PM

design by Rashidi et.al. [17]. El-Sisi et. al. [18] used a

modified binary Karatsuba-OfmanGF(2
191

) multiplier with

Montgomery PM in projective coordinate. Ismail [22]

implemented Left-to-right binary PM in Lopez-Dahab (LD)

projective coordinate with digit-serial. Ansari & Hasan [25]

implemented Montgomery ladder PM with pseudo-pipelined

word-serial. Khan &Benaissa [26] proposed an ECC

architecture with one and three pipelined multipliers based

on a modified LD Montgomery PM. Imran et. al. [27]

presented a modified PA and PD for PM based on

Montgomery algorithm. Different FPGA based hardware

implementations of the point multiplication on binary

elliptic curve have been summarized as depicted in Table 2.

In [30], the parallel architecture depends on using the

Montgomery ladder for field GF 2191 but with Karatsuba-

Ofman for the polynomial multiplier and Extended

Euclidian Algorithm (EEA) for the inversion. However, the

work in [31] presented an ECCP architecture design for IoT

securityusing the Montgomery ladder algorithm running

sequentially. All previous works results appeared in Fig.2.

4. AREA/TIME OPTIMIZATION

4.1 THE PROPOSED ECCP DESIGN

This work has implemented all the algorithms that have

designated in the preceding sections to design the proposed

ECCP. This can help to use only one functional unit of the

GF(2m) ALU of the ECCP as shown in Fig. 3; where m

may be 163 or 409.

The top-level architecture consists of a control unit, Block

RAM (BRAM), and a point addition/doubling unit as shown

in Fig. 4. The control unit receives the EC parameters, reads

a key (or a scalar), and controls the point addition/doubling

unit according to the binary double and add point

multiplication algorithm shown in 2.2. Design point

addition/doubling unit, on the other hand, is responsible for

computing all required field arithmetic operations. We

assume that at the beginning of the scalar multiplication

operation the BRAM contains the scalar and a projective EC

point as it considers fast access FPGAs read/write memory.

These values must be maintained during the iterations of EC

scalar multiplication. The point addition/doubling unit

designed for computing the scalar multiplication algorithms.

Fig. 4 shows architecture for the proposed ECCP design.

4.2 OPTIMIZING ADDITION/DOUBLING UNITVIA

FORWARDING PATHS

An optimal PA/PD unit is illustrated in Fig. 5. Its main three

units which constitute the GF(2
m
) addition, multiplication,

and squaring operations.

In addition to the two multiplexers (MUX3) and

(MUX4) used to accomplish the forward paths from one

finite arithmetic unit to another. These multiplexers are

controlled by two signals DSel and ESel. The operands are

stored in the register file which consists of four to six

registers with output being selected for A, and B using

multiplexer (MUX1) with control signals (Asel, and Bsel).

These signals addressed from the control unit shown in Fig.

4. Moreover, the proposed ECCP design aims to obtain

efficient registers number for various explicit formulas

appearing in [22] for low-area ECCP design. The forward

liveness analysis methodology [22] main emphasis is to

expose a forward data-path entity that take place between

the functional units (e.g. finite field squarer (S) multiplier

(M) and adder (A)) and the register file. In theory, any path

from root to leaf states gives a valid sequence requiring a

minimum number of registers to complete execution [26].

Also, an effective execution order which achieves a

maximum amount of short live variables to efficiently use

forward path.

5. IMPLEMENTATION RESULTSAND COMPARISON

The developed ECCP over GF(2163) and GF(2409) system

has been implemented entirely in RTL-level VHDL and

Integrated Synthesizing Environment (ISE). For fair

comparison with the other architectures presented in the

literature [27], the code has been synthesized and

implemented on FPGAs using Virtex-6 XC6VLX760.

 114

5.1 IMPLEMENTATION RESULTS

SQUARINGAND REDUCTION OPERATIONS:

The squaring and reduction implementation result over

GF(2163) and over GF(2409) are shown in Table 3.

POLYNOMIAL MULTIPLIERS: BIT PARALLEL

A GF(2163) and a GF(2409) binary polynomial multipliers

based on bit parallel digit-serial have been proposed in this

architecture, see Table 4.

MODIFIEDRIGHT-TO-LEFT 𝐆𝐅(𝟐𝟏𝟔𝟑) AND 𝐆𝐅(𝟐𝟒𝟎𝟗)

MULTIPLICATIONS

A parallel implementation using Karatsuba-Ofman to reduce

the latency is shown in Table 5 (time optimization).

Pipeline technique in GF(2163) and in GF(2409) polynomial

multipliers (area optimization) are illustrated in Table 6.

INVERSION

Fig. 6 illustrates the implementation of the inversion ITA

[17].

Fig. 6: Itoh-Tsujii architecture

PA & PD IN PROJECTIVECOORDINATE:

Fig. 7 shows PA & PD architecture.Architecture with one

and three pipelined multipliers based on a modified LD

Montgomery PM is illustrated in Table 7.

SCALAR MULTIPLICATIONIN PROJECTIVE COORDINATE:

Fig. 8 shows the implementation of scalar multiplication

architecture.

PARALLEL IMPLEMENTATION OF MONTGOMERY LADDER

The proposed ECCP depend on the parallel implementation

for the Montgomery scalar algorithm which uses 3 unit for

polynomial multiplier. The operation of point addition and

point doubling take two stage to complete in this proposed

architecture. Table 8 shows the results of Montgomery

parallel implementation.

5.2 COMPARISONWITHSTATE-OF-THE-ART

Table 9 shows a relatively architecture enhancement results

which has been obtained by this work compared with state-

of-the-art PM implementations.

6. A CRYPTOGRAPHY PROTOCOL

The security of Automated Teller Machines (ATMs) is

necessary because it has become one of the essential

elements in human life. Also, securing banking transactions

is one aspect that many researchers are interested in

cryptography theory and mechanisms. Financial transactions

need to insurance and make sure that hackers cannot change

data and even steal its contents [32]. The security between

two channels need some aspects like confidentiality, data

authentication, data authorization as well as data integrity

and nonrepudiation. So, the ATMs security and related smart

cards can be investigated as a cryptography protocol.

As indicated in Fig. 9, each ATM has two security

weakness; one attack is on the ATM itself and another attack

is on the network existed between the ATM and bank

computers. These weaknesses need to be strengthened using

cryptography secure mechanisms to protect data from

unauthorized use. An ECCP which is used to change

message or data from one cipher form to another can be used

with the basic key generation and exchange protocol [32].

This security key can be used in the authentication process.

As well as a fast and small size key generation, several

mechanisms can be added with elliptic curve cryptography

like biometric to make a high assurance verification for

ATM bank transactions.

ATMs allow customers to perform most banking services

including withdrawing, depositing, transferring funds and

checking account without bank employees. ATMs operate 24

hours for customer services and each of them has a small

display and either touch screen or input devices for entering

inputs. Steps of a secure financial transaction is showed in

Fig. 10. A typical ECCP as an embedded system with ATMs

is illustrated in Fig. 11.

Fig. 9: The possibility attacks on smart cards and ATM

machines

 115

Fig. 10: ATM transaction steps taken from [33].

Fig. 11: ATM communication with other devices taken from

[33].

The security of an ATM is based on using smart cards

which may be contact, contactless, and hybrid cards. The

hybrid cards can operate in either contact or contactless

mode. Contact cards mean insert a smart card inside an

ATM, and then read and store the account information

recorded on magnetic strips on that card. The control unit

starts the execution of the encryption unit to convert the

card’s information to a cipher text and send it to bank

computers for verification. The same manner is occurred for

contactless cards, but it is based on RFID sensors. The

RFID tag was used to present the machine card reader which

is read the magnetic strip on the card.

7. CONCLUSIONAND FUTURE WORK

In this work, there is a trade-off between the execution time,

minimum number of registers (area overhead) and security

over GF(2
163

) and GF(2
409

). Hence, the implementation is

compared with state-of-the-art which shows a relatively

improvement in the execution time for the same algorithmic

architecture. These results show that, optimizing area/time

of the ECCP requires the registers inside the multiplier and

the number of modules of functional units be minimum. The

high-performance demand and minimizing the FU power

dissipation mandate the next step of this work must

guarantee that the multipliers are, nearly, at no time left idle.

On the other hand, this is an indication that the future work

needs to address how to develop a methodology to optimize

the amount of power dissipation by the finite field

multiplier. There is a definite possibility that reducing the

area requirements may significantly increase the reduction

of total power consumption dissipated by the optimized

design by fitting a smaller FPGA device. It is certain that

this will cause more reduction specially in leakage power.

The next step of this research is to impose an authentication

scheme based on ECCP for IoT and embedded devices

which satisfies all security requirements and is immune to

various types of attacks [1].

Table 3: Squaring and reduction operations

Operation # of occupied LUTs # of occupied Slices
Latency (Virtex-6

XC6VLX760)

Squaring 163 bit 0 0 0.345 ns

reduction (one bit at a

time)
164 89 1.616 ns

Fast reduction 165 146 1.267 ns

Squaring 409 bit 0 0 0.345 ns

Fast reduction 285 187 9.977 ns

Table 4: Results of the bit parallel Multipliers

Operation Digit size in bits Frequency in MHz # of occupied Slices Time in ns

Bit parallel 163 - 4,123 4.69

Pipeline Digit serial 82 380.12 2,718 5.26

Pipeline Digit serial 42 408.69 1,497 9.78

Bit parallel 409 - 17,560 5

Pipeline Digit serial 205 276.095 9,907 7.5

Pipeline Digit serial 102 281.597 4,813 15

Table 5:Karatsuba-Ofman for PM in 𝐺𝐹(2163) and for PM in 𝐺𝐹(2409)

Operation # of parallel operations # of occupied Slices Latency (Virtex-6 XC6VLX760)

Basic (82 bit) 2 4,715 18.711 ns

Basic (42 bit) 4 4,584 10.665 ns

Basic (22 bit) 8 4,600 6.845 ns

Basic (102 bit) 4 7,324 27.504 ns

Basic (52 bit) 8 7,275 13.517 ns

Basic (24 bit) 16 7,075 8.213 ns

 116

Table 6: Pipelined digit serial K-O for PM in 𝐺𝐹(2163) and for PM in 𝐺𝐹(2409)

Operation # of parallel operations # of occupied Slices Latency (Virtex-6 XC6VLX760)

basic(163bit) 1 281 489 ns

basic (42 bit) 4 612 108.609ns

basic (22 bit) 8 1237 54.264ns

basic (12 bit) 16 2268 26.257ns

basic (6 bit) 32 4400 11.452ns

basic(409bit) 1 628 968 ns

basic (204 bit) 2 1325 658ns

basic (22 bit) 8 2843 369ns

basic (12 bit) 16 4228 184ns

basic (6 bit) 32 8764 95ns

Fig. 7: The Point Addition and Point Doubling architectures

Table 7: The inversion results

Operation PM algorithm # of Slices Frequency in MHz
Latency (Virtex-6

XC6VLX760)

Itoh-Tsujii K-O on RTL 46198 ---- 219.398 ns

Itoh-Tsujii

(pipeline)
K-O on RTL 4201 225.7 360 ns

Itoh-Tsujii

(pipeline)
Bit parallel multiplier 4602 458.6 315 ns

Itoh-Tsujii

(pipeline)
K-O on RTL 7806 257.3 608 ns

Itoh-Tsujii

(pipeline)
Bit parallel multiplier (DS = 52) 5,657 296.845 504 ns

Table 8: Montgomery ladder algorithm for generic ECCP

Type of PM Power in mW Digit Size in bits Frequency in MHz # of Slices Time (s)

Bit parallel 5237.00 DS = 163 369.5 19,824 1.9

K-O shift& add 7440.74 DS = 163 151.9 14,068 3.583

Bit parallel 2115.00 DS = 52 253.770 18,807 29

Bit parallel 1824.25 DS = 26 317.140 12,630 59

 117

REFERENCES

[1] S. Kumari et. al., “A secure authentication scheme based on elliptic

curve cryptography for IoT and cloud servers,” J. Supercomputer,
Springer, Published online, April 2017.

[2] C. Lee and H. Chien, “An Elliptic Curve Cryptography-Based RFID

Authentication Securing E-Health System,” International Journal of
Distributed Sensor Networks, 2015.

[3] C. H. Gebotys, Security in Embedded Devices, New York, Springer,

2010.
[4] R. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve

Cryptography, Chapter 3 “Elliptic Curve Arithmetic”, New York:

Springer Professional Computing, 2004.
[5] Institute of Electrical and Electronics Engineers, Standard

Specifications for Public Key Cryptography, (IEEE P1363: IEEE),

2000.
[6] National Institute of Standards and Technology (NIST), Digital

Signature Standard (DSS), (NIST: NIST FIPS 186-4), 2009.

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf
[7] M. Imran, M. Rashid, A. R. Jafri, and M. Najam ul Islam, "ACryp-

Proc: Flexible Asymmetric Crypto Processor for Point

Multiplication," IEEE Access, Vol. 6, pp. 22778-22793, 2018.
[8] Realpe P C and Velasco-medina J, High-Performance Elliptic Curve

Cryptoprocessors over GF(2m) on Koblitz Curve, Analog Integr Circ

Sig Process. Springer. 85 129–138, 2015.
[9] M.S. Albahri, M. Benaissa, and Zia Uddin A. Khan, “Parallel

Implementation of ECC Point Multiplication on a Homogeneous

Multi-Core Microcontroller,” Proceeding of 12th International
Conference on Mobile Ad-Hoc and Sensor Networks (MSN), IEEE,

16-18 Dec., Hefei, China, pp. 386-389, 2016.

[10] Loi K C C and Ko S-B, "Parallelization of Scalable Elliptic Curve

Cryptoprocessors in GF(2m)," Microprocessors and Microsystems,

Volume 45, Part A, Elsevier 45 Pages 10–22, August 2016.

[11] Rashidi B., Farashahi R. R. and Sayedi S. M., " High-Speed and

Pipelined Finite Field Bit-Parallel Multiplier over GF(2m) for

Elliptic Curve Cryptosystems," 11th Int. ISC Conferene on
Information Security and Cryptology, Tehran 15-20, 2014.

[12] Rashidi B., Farashahi R. R. and Sayedi S. M., “High-Performance

and High-Speed Implementation of Polynomial Basis Itoh-Tsujii
Inversion Algorithm over GF(2m),” IET Information Security, Vol.

11, Iss. 2, pp. 66-77, 2017.

[13] P. L. Montgomery, “Speeding the Pollard and Elliptic Curve
Methods of Factorization,” Math. Computing, Vol. 48 - pp. 243–

264, 1987.

[14] J. López, and R. Dahab, “Improved Algorithms for Elliptic Curve
Arithmetic in GF(2n),” Proc. Sel. Areas Cryptography, pp. 201–

212, 1999.

[15] T. Itoh, and S. Tsujii, “A Fast Algorithm for Computing
Multiplicative Inverses in GF(2m) using Normal Bases,”

Information Computing, Vol. 78, No. 3, pp. 171–177, 1988.

[16] A. P. Fournaris, C. Dimopoulos, and O. Koufopavlou, "A Design
Strategy for Digit Serial Multiplier Based Binary Edwards Curve

Scalar Multiplier Architectures," Proc. Euromicro Conference on

Digital System Design (DSD), 2017.
[17] Rashidi B, Farashahi R R and Sayedi S M, "High-Speed Hardware

Architecture of Scalar Multiplication for Binary Elliptic Curve

Cryptosystems," Microelectronics Journal, 2016.
[18] A. B. El-Sisi, S. M. M Shohdy, and N. Ismail, “Reconfigurable

Implementation of Karatsuba Multiplier for Galois Field Elliptic

Curves,” Tarek Sobh, Khalid Ellithy, and Ausif Mahmood
(Editors), Novel Algorithms and Techniques in

Telecommunications and Networking, Springer Nature America,

pp 87-92 Inc, 2010.
[19] F. Rodriguez-Henriquez and Q. K. Kog. “On Fully Parallel

Karatsuba Multipliers for GF (2m)”. Proc. International

Conference on Computer Science and Technology (CST), pp. 405-
410, 2003.

Fig. 8: The scalar multiplication architecture

Table 9: A comparison with state-of-the-art

Architecture PM algorithm FF multiplier FPGA
Frequency in

MHz

of

occupie

d slices
Time in s

[23]
Montgomery

Ladder

Bit parallel with K-

O
Virtex 7 294 3041 4.6

[22]
Segmented

pipeline
Virtex 5 113 11777 3.99

[8] Digit parallel Virtex 7 351 3107 11.28

This work Bit parallel Virtex 6 369.5 19,824 1.9

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf

 118

[20] H. Modares, Y. Salem, R. Salleh and M. T. Shahgoli "A Bit-Serial

Multiplier Architecture for Finite Fields Over Galois Fields,"
Journal of Computer Science, 2010.

[21] M. Keller and W. Marnane "Low Power Elliptic Curve

Cryptography," Lecture Notes in Computer Science, and
Proceeding of PATMOS’07, pp. 310-319, 2007.

[22] M. N. Ismail, “Towards Efficient Hardware Implementation of

Elliptic and Hyperelliptic Curve Cryptography,” Ph.D. Thesis,
Dept. of Electrical and Computer Engineering, University of

Waterloo, Ontario, Canada, July 2012.

[23] H. Cohen and G. Frey, Eds. Handbook of Elliptic and Hyperelliptic
Curve Cryptography, “Arithmetic of elliptic curves,” D. Doche and

T. Lange, Chapman & Hall/CRC, Boca Raton, FL, Chapter 13, pp.

267-302,2006.
[24] B. Ansari and M. A. Hasan, “High-Performance Architecture of

Elliptic Curve Scalar Multiplication,” IEEE Transactions on

Computers, Vol. 57, No. 11, pp. 1443-1453, 2008.
[25] Zia U. A. Khan and M. Benaissa, “High-Speed and Low-Latency

ECC Processor Implementation Over GF(2m) on FPGA,” IEEE

Transactions on Very Large-Scale Integration (VLSI) Systems,

Vol. 25, no. 1, pp. 165-176, Jan. 2017.

[26] P. K. Mishra, P. Pal and P. Sarkar, "Towards Minimizing Memory

Requirement for Implementation of Hyperelliptic Curve
Cryptosystems," Lecture Notes in Computer Science, Vol. 4464,

and ISPEC, pp. 269-283, 2007.

[27] W. N. Chelton and M. Benaissa "Fast Elliptic Curve Cryptography
on FPGA,” IEEE Transactions on Very Large-Scale Integration

(VLSI) Systems, vol.16, Issue 2, pp. 198-205, 2008.
[28] L. Lijuan and L. Shuguo, “High-Performance Pipelined

Architecture of Elliptic Curve Scalar Multiplication over GF(2m),”

IEE Transactions on VLSI Systems, pp. 1223-1232, 2016.
[29] P. Zode et.al. “Fast Architecture of Modular Inversion Using Itoh-

Tsujii Algorithm,” International Symposium on VLSI Design and

Test VDAT, pp. 48-55, 2017.
[30] Shohdy S, El-Sisi A and Ismail N., “FPGA Implementation of

Elliptic Curve Point Multiplication over GF(2191),” Advances in

Information Security and Its Applications (ISA), Lecture Notes in
Computer Science, Springer-Verlag Berlin. Germany, 5576 619–

634, 2009.

[31] Kudithi T, Sakthivel R., “High-Performance ECC Processor
Architecture Design for IoT Security Applications,”

Supercomputer J. Springer. 75 447–474, 2019.

[32] David Hutchison, and et., " Information Security and Cryptology",
ICISC 2004, 7th International Conference Seoul, Korea, Springer,

December 2-3, 2004.

[33] Y. W. Hau1 Mohamed Khalil-Hani and Muhammad N. Marsono,
"Systemc-Based Hardware/Software Co-Design of Elliptic Curve

Cryptographic System for Network Mutual Authentication",

Malaysian Journal of Computer Science, Vol. 24(2), 2011.

