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Abstract— An Elliptic Curve Crypto-Processor (ECCP) is 

a favorite public-key cryptosystem due to its small key 

size and its high security arithmetic unit. It is applied in 

constrained devices which often run on batteries and have 

limited processing, storage capabilities and low power. 

This research work presents an effective ECCP 

architecture for security in IoT and embedded devices. A 

finite field polynomial multiplier takes the most 

implementation effort of an ECCP because it is the most 

consuming operation for time and area. So, the objective 

is to implement the main operation of Point Multiplication 

(PM) 𝑄 = 𝑘𝑃  using FPGA. The aim is to obtain the 

optimal registers number for an area optimization of 

ECCP architecture. Moreover, it proposes a time 

optimization of ECCP based on the liveness analysis and 

exploiting forward paths. Also, a comparison between 

sequential and parallel hardware design of PM based on 

Montgomery ladder algorithm is provided. 

The developed ECCP design is implemented over 

Galois Fields GF (2
163

) and GF (2
409

) on Xilinx Integrated 

Synthesizes Environment (ISE) Virtex 6 FPGA. In case of 

GF (2
163

), this work achieved an area saving that uses 

2083 Flip Flops (FFs), 40876 Lookup Tables (LUTs) and 

19824 occupied slices. The execution time is 1.963 s 

runs at a frequency of 369.529 MHz and consumes 

5237.00 mW. In case of GF (2
409

), this work achieved an 

area saving that uses 8129 Flip Flops (FFs), 42300 

Lookup Tables (LUTs) and 18807 occupied slices. The 

execution time is 29 s runs at a frequency of 253.770 

MHz and consumes 2 W. The obtained results are highly 

comparable with other state-of-the-art crypto-processor 

designs. The developed ECCP is applied as a case study 

of a cryptography protocol in ATMs. 
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1. INTRODUCTION 

With advanced technology, there is a necessity of secure 

multiple means of communications and data transmission 

between devices [1]. The insurance is importance for 

embedded systems that found everywhere and ranged from 

light devices to satellites around the earth [2]. Each 

embedded system composes many devices which connected 

with each other. Embedded systems contain microprocessors 

with modern devices technology like WIFI, GSM, GPS, 

Bluetooth or other devices that used in communication and 

remote control [3]. The core operation in a public key 

cryptosystem depends on encrypt data using a public key and 

decrypt data using a private key.The ECC is one of the 

public key schemes that use the finite field (Galois Field 

(GF)) arithmetic to do its operations. Fig. 1 illustrates the 

ECCP layers architecture. So, it is useful to optimize the 

finite field operations for ECCPs in order to reduce area and 

power consumption [8]. The efficiency of the ECC 

implementation relies on scalar multiplication or Point 

Multiplication (PM) which is built on group and Finite Field 

(FF) operations [4]. The field multiplication and field 

inversion have direct impact on speed and performance of 

the overall ECCP implementation. 

The traditional way of implementing the ECC and the 

finite field algorithms is software only, running on general-

purpose processors, microcontrollers, multicore/manycore 

(MC) or on digital-signal processors [4].In practice, the 

decisive encounter of software executions of ECC is the 

latency [9] or potential owing to the word close calculations 

essential and recurrent memory processes. Various ECC 

software implementation on MC architectures have been 

presented to enhance ECC performance by improving 

algorithms primary the PM methods. For example, Albahri 

et. al. [9] proposed an ECC PM over GF(2
163

) on Xmos kit 

IDE founded on executing a vertical parallelization on finite 

field Point Doubling (PD) and Point Addition (PA) group 

steps. They also proposed a modification to the left-to-right 

double and add binary PM to eliminate data hazards. 

Nevertheless, the desired small key size, low area, lower 

memory requirements, faster encryption and decryption, less 

power consumption, and lower bandwidth necessities 

recommend ECC for hardware cryptosystem processor 

synthesizes. This work is concerned with the implementation 

of an efficient ECCP with a special scalar multiplier, fully 

pipelined, parallel, and self-controlled architecture. Its 

intention is to enhance the ECCP hardware design targeted 

for resource constrained, IoT, and embedded devices. 

The proposed ECCP hardware design presented in this 

work is focused over binary Galois fields GF(2
163

) and 

GF(2
409

). There are numerous algorithms that have been 

reported to implement PM, some of them are designed to 

reduce area and others to save the ECCP time. The main 

contribution of this work may be stated in the following 

points: 

 Implementing algorithms such as Montgomery [13-17], 

Itoh-Tsujii [12, 15] and Karatsuba [18-21] for 

optimizing EC and finite field operations to improve 
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speed, throughput, and/or computation time. The 

implementation is performed over GF2
163

 and GF2
409

 

 Optimizing area requirements by minimizing the 

Register File (RF) size in ECCP. 

 Presenting a low-power method to the proposal of 

embedded ECCP architecture that achieves the 

bypassing and substitutes the power cost of transfer 

short-lived variables to/from RF. 

 Design and apply the technique for N time squarer (x
2
)

N
 

for GF2
163

 and GF2
409

 and compared with other 

techniques which depend on using glitch free clock 

switch. 

 Comparison between sequential and parallel architecture  

based on liveness analysis and forward path in the 

implementation of ECCP PM algorithm. 

This research paper is planned as follows: the next 

section starts a mathematical preliminary that include 

arithmetic procedures for binary Galois fields. It also 

presents elliptic curve arithmetic algorithms, a brief 

introduction on scalar multiplication, projective 

representation and PM costs. The state-of-the-art is existing 

in section three. Section four provides area/time 

optimization approach. The implementation results and 

discussion are detailed in section five. Section six provides a 

case study of cryptography protocol. The conclusion and 

future direction are described in section seven. 

2. ECC ARITHMETIC PRELIMINARY 

2.1 BINARY GALOIS FIELD 𝟐𝐦 ARITHMETIC 

This section focuses on Galois fields of order 2𝑚  arithmetic 

(𝐺𝐹 2𝑚  ) which is endorsed byNISTfor EC Digital 

Signature Algorithm (ECDSA) application [2]. A generic 

standard binary ECcan be represented as: 

𝑬 𝑮𝑭 𝟐𝒎  : 𝒚𝟐 + 𝒙𝒚 = 𝒙𝟑 + 𝒂𝒙𝟐 + 𝒃  

  (1) 

where 𝑎, 𝑏 are in 𝐺𝐹 2𝑚   and𝑏 ≠ 0. 

For special cases when m = 163 or 409, the hardware circuit 

for performing addition needs exactly 163 or 409 XOR 

gates respectively. 

An ECCP is designed and build based on the main 

operation PM (𝑄 = 𝑘 𝑃 = 𝑃 + 𝑃 + ⋯+ 𝑃)  and it can be 

done using repeated Point Addition (PA) and Point 

Doubling (PD), for example 11𝑃 = 2 5𝑃 + 𝑃 =
2 2 2𝑃 + 𝑃 + 𝑃 . The Lopez-Dahab (LD) projective 

coordinates are used to calculate the PM of the binary ECCP 

in Eq. (1). 

All operations of the PM require finite field operations 

like inversion, squarer, polynomial multiplier and addition 

[4]. This work adopted with GF 2163  and GF 2409  binary 

fields. The GF(2
m
) is more suitable for hardware design in 

which the addition operation requires only XOR unit and 

eliminates the need for carry propagation. The square 

operation is done with no area and it is meant by inserting 

zero between bits. A polynomial multiplier may be 

implemented in a bit serial or a bit parallel multiplier [11]. 

A bit serial multiplier is a good choice for area but a bit 

parallel is a good choice for time. Both the polynomial 

squarer and the polynomial multiplier are needed to follow 

with irreducible polynomial. The irreducible polynomial for 

a(z) mod p(z) was meant by the reminder of a long division 

of a(z) by p(z).The irreducible polynomial was implemented 

in hardware by using shift and XOR operation. Finally, the 

inversion operation is the most complicated unit as it takes a 

large area and has a slow implementation. The Itoh-Tsujii 

[12] algorithm is one of the inversion algorithms that 

convert the inversion operation to run based on two finite 

field units which are multiplier and squarer units. The 

inversion operation takes only nine multiplications for 

GF  2163  or ten multiplications for GF  2409  and (m-1) 

repeated squaring operations. 

FIELD ADDITION OPERATION 

In a binary Galois Field 𝐺𝐹 2𝑚   or (𝔽2𝑚 ) the polynomial 

addition operation is executed bitwise with no carry 

propagation (Exclusive-OR or XOR). For example, let A 

and B are represented as: 

𝑨 𝒙 =  𝒂𝒊𝒙
𝒊𝒎−𝟏

𝒊=𝟎 , 𝑩 𝒙 =  𝒃𝒊𝒙
𝒊𝒎−𝟏

𝒊=𝟎 . 

Then, 

𝑪 𝒙 =  𝒄𝒊𝒙
𝒊

𝒎−𝟏

𝒊=𝟎

= 𝑨 𝒙 + 𝑩 𝒙  

=    𝒂𝒊 + 𝒃𝒊 𝒎𝒐𝒅 𝟐 𝒙𝒊𝒎−𝟏
𝒊=𝟎  (2) 

FIELD SQUARING OPERATION 

Squaring a field element in 𝔽2𝑚  represented via a 

polynomial basis,  1, 𝑥, 𝑥2 , … , 𝑥𝑚−1 , is ruled by the 

following equation. 

𝑨𝟐 𝒙 =   𝑨𝒊𝒙
𝒊

𝒎−𝟏

𝒊=𝟎

 

𝟐

=  𝑨𝒊𝒙
𝟐𝒊

𝒎−𝟏

𝒊=𝟎

𝒎𝒐𝒅 𝑭 𝒙  

Hence, A2(x)in 𝔽2163 , for example, is 

 

𝑨𝟐 𝒙 =  𝒂𝟏𝟔𝟐𝒙
𝟏𝟔𝟎 + ⋯+ 𝒂𝟖𝟑𝒙

𝟐 + 𝒂𝟖𝟐 𝒙
𝟏𝟔𝟒𝒎𝒐𝒅 𝑭 𝒙                                

𝑨𝑯

 

+ 𝒂𝟖𝟏𝒙
𝟏𝟔𝟐 + ⋯+ 𝒂𝟏𝒙

𝟐 + 𝒂𝟎                    
𝑨𝑳

                                         (3) 

comprises three mathematical stages: (i) expand AL part with 

interleaved 0’s; (ii) reduce the AH part with the reduction 

polynomial   

𝑭 𝐱 = 𝐱𝟏𝟔𝟑 + 𝐱𝟕 + 𝐱𝟔 + 𝐱𝟑 + 𝟏; 

and (iii) add the two parts: AH, AL. However, for hardware 

implementations, the use of Eq. (3) enables these three steps 

to be combined in four level XOR gates if the reduction 

polynomial has a smaller second-highest degree, which is 

the case here. 

FIELD MULTIPLICATION OPERATION 

A few polynomial basis bit-serial, digit-serial, and bit-

parallel finite field multipliers have been proposed in [4]. 

The multiplication of two binary polynomials A and B may 

be simplified as: 

 

𝑪 𝐱 = 𝑨 𝐱 · 𝑩 𝐱 𝒎𝒐𝒅 𝑭 𝐱  

= 𝑨 𝐱   𝒃𝒊
𝒎−𝟏

𝒊=𝟎
𝐱𝒊 𝒎𝒐𝒅 𝑭 𝐱  

=   𝒃𝒊
𝒎−𝟏

𝒊=𝟎
𝑨 𝐱 𝐱𝒊 𝒎𝒐𝒅 𝑭 𝐱  

where𝐹 x  is the reduction binary polynomial of degree 

m.Therefore, 

𝑪 𝐱 = (𝒃𝟎𝑨 𝐱 + 𝒃𝟏𝑨 𝐱 𝐱 + 𝒃𝟐𝑨 𝐱 𝐱
𝟐 + ⋯ 
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+𝒃𝒎−𝟏𝑨 𝐱 𝐱
𝒎−𝟏)𝒎𝒐𝒅 𝑭 𝐱    

  (4) 

Algorithm 1 shows a well-suited procedure for hardware 

implementation of Eq. (4) when area is constrained. The bit-

parallel type multipliers are best suited for applications that 

require fewer clock cycles, i.e. high speed but more space. 

Algorithm 1 shows that field multiplication in 𝐺𝐹 2𝑚   is 

computed by mainly two operations; binary polynomial 

multiplication 𝐶 = 𝐴 x · 𝐵(x)  and 𝑚𝑜𝑑 𝐹(x)  reduction 

polynomial 𝐹(x) . This work adopts binary Karatsuba-

Ofman [18, 19]. 

REDUCTION OPERATION 

The reduction process is required by the square and 

multiplication operations as depicted in Eq. (3) and Eq. (4) 

respectively. The outcome of the reduction process is to 

decrease the order of subsequent values from greater than 𝑚 

to fewer or equal to 𝑚.𝑪 𝒙 = 𝑪  𝒙  𝒎𝒐𝒅 𝑭(𝒙) 

 

KARATSUBA-OFMAN MULTIPLIER [18 - 19] 

Binary Karatsuba-Ofman multiplier was introduced in [18, 

19] which is appropriate for 𝐺𝐹 2𝑚   where 𝑚  is a 

predetermined number. Let 𝐴, 𝐵  two elements in 𝔽2𝑚  

where: 

𝑨 =  𝒂𝒊𝒙
𝒊

𝒎−𝟏

𝒊=𝟎

=  𝒂𝒊𝒙
𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

 

+  𝒂𝒊𝒙
𝒊 = 𝒙

𝒎

𝟐  𝒂𝒊+𝒎

𝟐
𝒙𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

+  𝒂𝒊𝒙
𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

=  𝒙
𝒎

𝟐𝑨𝑯 + 𝑨𝑳

𝒎−𝟏

𝒊=
𝒎

𝟐

 

and 

𝑩 =  𝒃𝒊𝒙
𝒊

𝒎−𝟏

𝒊=𝟎

=  𝒃𝒊𝒙
𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

+  𝒃𝒊𝒙
𝒊

𝒎−𝟏

𝒊=
𝒎

𝟐

 

= 𝒙
𝒎

𝟐  𝒃𝒊+𝒎

𝟐
𝒙𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

+  𝒃𝒊𝒙
𝒊

𝒎

𝟐
−𝟏

𝒊=𝟎

=  𝒙
𝒎

𝟐𝑩𝑯 + 𝑩𝑳 

The polynomial product is given as 

𝑪 = 𝒙𝒎𝑨𝑯𝑩𝑯 +  𝑨𝑯𝑩𝑳 + 𝑨𝑳𝑩𝑯 𝒙
𝒎

𝟐 + 𝑨𝑳𝑩𝑳 

   (5) 

 

𝑪 = 𝒙𝒎𝑨𝑯𝑩𝑯 + 𝑨𝑳𝑩𝑳 

+(𝑨𝑯𝑩𝑯 + 𝑨𝑳𝑩𝑳 + (𝑨𝑯 + 𝑨𝑳)(𝑩𝑳 + 𝑩𝑯))𝒙
𝒎

𝟐  

(6) 

𝑪 = 𝒙𝒎𝑪𝑯 + 𝑪𝑳 

Algorithm 2 shows a modified binary Karatsuba 

multiplier [19]. 

 

2.2 ELLIPTIC CURVE ARITHMETIC 

Arithmetic of EC is defined in terms of underlying field 

operations [4] which are described in section 2.1. In its 

simplest form a point on an EC, in affine coordinate, is 

distinct as (𝑥, 𝑦 ) of 𝐺𝐹 2𝑚   that satisfying Eq. (1) with 

𝑏 = 1. Since Point Addition (PA) algorithms used in this 

work are explicitly involve 𝑎 without b, so we do not have 

to store 𝑏. However, Point Doubling (PD) is a special case 

of point addition. Point Multiplication (PM), e.g., 𝑄 = 𝑘𝑃 is 

the accumulation of 𝑘 duplicates of point 𝑃 hence: 

𝑸 = 𝒌𝑷 = 𝑷 + 𝑷 + ⋯+ 𝑷           
𝒌 𝒄𝒐𝒑𝒊𝒆𝒔

 

For a large 𝑘, PM can be done using repetitive PAs and 

PDs. 

 

POINT MULTIPLICATION (PM) [4, 20 - 23] 

Elliptic curve points can be represented using various 

coordinate systems such as affine or projective 

representations [21, 22]. For each such system, the speed of 

PAs and PDs is different [22]. An EC point in projective 

coordinate is represented in 𝐺𝐹 2𝑚   as 𝑃 = (𝑋, 𝑌, 𝑍) . To 

convert the affine point (𝑥, 𝑦) to projective coordinates, Z is 

simply set to 1, i.e., (𝑥, 𝑦, 1) [21]. Projective coordinates are 

efficient for inner computations, however, a conversion 

operation from projective to affine is needed before the 

transmission step. The costs of addition, squaring, 

multiplication, and inversion operations in 𝔽2𝑚  for various 

coordinates are listed in Table 1 [23]. 

 

This work adopts the projective coordinates presented by 

Lopez-Dahab (LD) [14]. According to Lopez-Dahab 

projective point representation 𝑃 =  𝑋, 𝑌, 𝑍 , 𝑍 ≠ 0  adapts 

the affine representation 𝑃 = (𝑋 𝑍 , 𝑌 𝑍2 ) . Hence, in 

projective coordinates, the binary EC curve in Eq. (1) is 

attained by substituting x  and 𝑦  with 𝑋 𝑍  and 𝑌 𝑍2  [14]. 

Algorithm 3 is the right-to-left type of the elementary 

repetitive double/add method for point multiplication [4] 

with the aid of LD method for PA (Algorithm 4) and PD 

(Algorithm 5). 

 

LOBEZ-DAHAB (LD) EXPLICIT FORMULAS [17, 22] 

In Lopez-Dahab (LD) projective point [17, 22] coordinates 

Algorithm 4 and Algorithm 5 provide ECC explicit 

intermediate variables specified formulas for both PA and 

PD group operations, respectively. 

As a means of avoiding an expensive field inversion 

operation, it is convenient to work with the projective 

coordinates presented by LD. Therefore, for a given k and m 

the overheads of implementing a scalar multiplication using 

Algorithm 3 [21] is approximated as: 

𝑵𝒃𝒊𝒏𝒂𝒓𝒚 = 𝒎𝑵𝒅𝒐𝒖𝒃𝒍𝒆 + (𝒎 𝟐 )𝑵𝒂𝒅𝒅 
 

BASIC POINT MULTIPLICATION COSTS 

Approximations for point multiplication costs are existing in 

terms of curve operations (PAs and PDs) [4], and the 

equivalent field operations (MUL, SQR, ADD and INV). 

Convert from affine to projective costs 2SQR + 1ADD. Point 

addition and doubling in projective coordinates cost 14MUL 

+ 4SQR + 9ADD and 5MUL + 4SQR + 5ADD operation 

counts respectively. The overall overhead of coordinates 

conversion from projective to its corresponding affine [21] 

may be 2MUL + 1INV + 1SQR. 

 

 

 



 109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: The PM of ECCP Layers architecture. 

 
 

Algorithm 1 bit-serial binary polynomial multiplication (low to high) in 𝔽2𝑚  [4], [20]  

𝐶 x = 0 

𝐶 x = 𝑏𝑖𝐴 x + 𝐶 x  
𝐴 x = 𝐴 x · x 𝑚𝑜𝑑 𝐹 x  

Input: Two elements  𝐴 x  𝑎𝑛𝑑 𝐵 x ∈ 𝔽2𝑚 , a reduction polynomial F(x) of m degree, 

Output: C(x)∈ 𝔽2𝑚  where C(x) = A(x) · B(x) mod F(x). 

fori = 0 to m - 1 do 

end-for 

 return 𝐶 x  𝑚𝑜𝑑 𝐹(x)   //Reduction operation 

 

Algorithm 2 Modified binary Karatsuba multiplier in 𝐺𝐹 2𝑚   [18]  

𝑀𝐴𝑖
= 𝐴𝑖

𝐿 + 𝐴𝑖
𝐻  

𝑀𝐵𝑖
= 𝐵𝑖

𝐿 + 𝐵𝑖
𝐻  

Input: Two elements  𝐴, 𝐵 ∈ 𝔽2𝑚  with an arbitrary m, where 𝐴 = 𝑥
𝑚

2 𝐴𝐻 + 𝐴𝐿, 𝐵 = 𝑥
𝑚

2 𝐵𝐻 +
𝐵𝐿  

Output: C = AB a polynomial of2m-1 coordinates, and 𝐶 = 𝑥𝑚𝐶𝐻 + 𝐶𝐿 

procedure BK (C, A, B) 

begin 

       ℓ = [log2 m] 

ℎ = m – 2
ℓ
; 

       if (ℎ == 0) then C = Kmul 2
ℓ 
(A, B) return; 

      for i from 0 to ℎ -1 do 

     end; 

mul2ℓ(𝐶𝐿 , 𝐴𝐿 , 𝐵𝐿); 

mul2ℓ(𝑀,𝑀𝐴 , 𝑀𝐵); 

     BK(𝐶𝐻 , 𝐴𝐻 , 𝐵𝐻); 

     for i from 0 to 2ℓ -2 do𝑀𝑖 = 𝑀𝑖 + 𝐶𝑖
𝐿 + 𝐶𝑖

𝐻  end; 

     for i from 0 to 2ℓ -2 do𝐶ℓ+1 =  𝐶ℓ+1 + 𝑀𝑖end; 

end; 
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Table 1: Cost of PM operations [23] 

Operation Coordinates 
Cost 

Add(A) Mul(M) Inv (I) Sqr (S) 

PA 𝒜 8 2 1 1 

PD 𝒜 6 2 1 1 

Negation 𝒜 1 0 0 0 

PA Ƥ 8 16 0 2 

PD Ƥ 5 8 0 4 

Negation Ƥ 1 0 0 0 

PA ℒ𝒟 9 13 0 4 

PD ℒ𝒟 5 5 0 4 

Negation ℒ𝒟 1 1 0 0 

Montgomery Ƥ 3 6 0 4 

Montgomery Ƥ ⟼ 𝒜 6 10 1 6 

Mapping Ƥ ⟼ 𝒜 0 2 1 0 

Mapping ℒ𝒟 ⟼ 𝒜 0 2 1 0 

 

Algorithm 3 Bit-serial scalar multiplication [4] using LD coordinates for PA and PD [14]. 

Input: 𝑃 ∈ 𝐸 𝐺𝐹 2𝑚   , 𝑘 =  𝑘𝑖2
𝑖𝑡

𝑖=0  

Output: 𝑘𝑃 

1: 𝑄 ← ∞ 

2: fori = 0 to t - 1 do 

    2.1   if𝑘𝑖 = 1 then 

    2.2       𝑄 ← 𝑄 + 𝑃 

    2.3   end if 

    2.4       𝑃 ← 2𝑃 

3: end for 

4: return 𝑄 = 𝑘𝑃 

 

Algorithm 4 Lobez-Dahab projective coordinate for point addition (PA) in 𝑮𝑭 𝟐𝒎 . 

𝐸 𝐺𝐹 2𝑚   : 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑏 ≠ 0 

Input: 𝑃 = (𝑋1 , 𝑌1 , 𝑍1) and 𝑄 = (𝑋2, 𝑌2 , 𝑍2) in LD coordinates on 

Output: 𝑃 + 𝑄 =  𝑋3 , 𝑌3, 𝑍3  in LD coordinates. 

  1: 𝐴 = 𝑋1 ∗ 𝑍2 

  2:  𝐵 = 𝑋2 ∗ 𝑍1 

  3:  𝐶 = 𝐴2 

  4:  𝐷 = 𝐵2 

  5:  𝐸 = 𝐴 + 𝐵 

  6:  𝐹 = 𝐶 + 𝐷 

  7:  𝐺 = 𝑌1 ∗ 𝑍2
2 

  8:  𝐻 = 𝑌1 ∗ 𝑍1
2 

  9:  𝐼 = 𝐺 + 𝐻 

10:  𝐽 = 𝐼 ∗ 𝐸 

11: 𝑍3 = 𝐹 ∗ 𝑍1 ∗ 𝑍2 

12: 𝑋3 = 𝐴 ∗  𝐻 + 𝐷 + 𝐵 ∗ (𝐶 + 𝐺) 

13: 𝑌3 =  𝐴 ∗ 𝐽 + 𝐹 ∗ 𝐺 ∗ 𝐹 +  𝐽 + 𝑍3 ∗ 𝑋3 

 

Algorithm 5 Lobez-Dahab projective coordinate for point doubling (PD) in 𝑮𝑭 𝟐𝒎 . 

𝐸 𝐺𝐹 2𝑚   : 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑏 ≠ 0 

Input: 𝑃 = (𝑋1 , 𝑌1 , 𝑍1) in LD coordinates on 

Output: 2𝑃 =  𝑋3 , 𝑌3, 𝑍3  in LD coordinates. 

  1: 𝐴 = 𝑌2 ∗ 𝑍1
2 + 𝑌1 

  2:  𝐵 = 𝑋1 + 𝑋2 ∗ 𝑍1 

  3:  𝐶 = 𝐵 ∗ 𝑍1 

  4: 𝑍3 = 𝐶2 

  5:  𝐷 = 𝐵2(𝐶 + 𝑎 ∗ 𝑍1
2 

  6:  𝐸 = 𝐴 ∗ 𝐶 

  7: 𝑋3 = 𝐴2 + 𝐷 + 𝐸 

  8:  𝐹 = 𝑋3 + 𝑋2𝑍3 

  9:  𝐺 =  𝑋2 + 𝑌2 ∗ 𝑍3
2 

10:  𝑌3 =  𝐸 + 𝑍3 ∗ 𝐹 + 𝐺 
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Algorithm 6 Point multiplication using Montgomery ladder [10, 17]. 

Input: 𝑘 = (𝑘𝑚−1, 𝑘𝑚−2, … , 𝑘2, 𝑘1, 𝑘0)2 with   𝑘𝑚−1 = 1,  𝑃 = (𝑥, 𝑦) ∈ 𝐸 𝐺𝐹 2𝑚    

Output: 𝑄 =  𝑥𝑘 , 𝑦𝑘 = 𝑘 · 𝑃 

1- Set 𝑋1 = 𝑥, 𝑍1 = 1,  𝑋2 = 𝑥4 + 𝑏,  𝑍2 = 𝑥2 

2- for 𝑖 = 𝑚 − 2 to 0 do 

2-1 If 𝑘𝑖 = 1 then 

 𝑋1, 𝑍1 = Add  𝑋1, 𝑍1 , 𝑋2, 𝑍2, 𝑥 ; 
 𝑋2, 𝑍2 = Double (𝑋2, 𝑍2, 𝑏); 

 2-2 else 

 𝑋2, 𝑍2  = Add  𝑋2, 𝑍2 , 𝑋1 , 𝑍1, 𝑥 ; 
 𝑋1, 𝑍1  = Double (𝑋1 , 𝑍1, 𝑏); 

      end if; 

      end for; 

3- Convert from projective to affine 

𝑥𝑘 =
𝑋1

𝑍1
=

𝑥𝑍2𝑋1

𝑥𝑍1𝑍2
                                                            (7)  

𝑦𝑘 =
 𝑥+𝑥𝑘  [ 𝑋1+𝑥𝑍1  𝑋2+𝑥𝑍2 + 𝑥

2+𝑦 𝑍1𝑍2]

𝑥𝑍1𝑍2
+ 𝑦                      (8)                                                                                            

4- Return Q  

 

Algorithm 7 Inversion using Itoh-Tsujii algorithm (ITA) in 𝔽2𝑚  

Input:  𝐴 = (𝑥𝑍1𝑍2) ∈ 𝐺𝐹(2𝑚 ) 

Output: 𝐴−1 

1: 𝑟 ← (2𝑚 − 1) 

2: 𝐴𝑟 = 𝐴𝑟−1 . 𝐴 

3:  𝐴−1 = (𝐴𝑟)−1 . 𝐴𝑟−1 

4: return 𝐴−1 

 

Table 2 PM state-of-the-art 

Implementation ECCP Optimization 
Point (Scalar) 

Multiplication 
FPGA 

M. Imran et. al., 2018 

[7] 

Three architectures-based 

execution time vs reliability-

security algorithm 

Modified PA and PD for 

Montgomery PM 

Virtex 5, Virtex 6, 

and Virtex 7. 

B. Rashidi et. al. 2016 

[18] 

Parallel 

Low critical data path delay 

Montgomery ladder 

GF(2
163

) & GF(2
233

) 
Virtex 5 

M.S. Albahriet. al. 2016 

[9] 

Parallel on multi-core 

microcontroller 

Modified Left-to-right 

binary PM in L-D 

Xmos multi-core 

microcontroller 

Z. Khan et.al. 2015 [25] 

Efficient memory unit. 

Pipelined digit-serial multiplier 

Parallelization 

LD modified Montgomery 

PM algorithm 

 

1476 slices on 

Virtex 4 

LX2512 

Lijuan and Shuguo, 

2016 [28]  

Modified Montgomery ladder 

Pipeline 
Three-stage pipeline  

Virtex 4 

XC4 

B. Rashidi et. al. IET 

2017 [12]  

P. Zode et. al. 2017 [29]  

Tree structure  

Virtex 4  

ITA time 0.262 us 

for GF(2
163

) 

Khan and Benaissa 

2017 [25] 

1 and 2 stages pipelined full-

precision n 

Modified L-D Montgomery 

ladder 

Virtex 4, 

Virtex 5,  

Virtex 7 

Loi&Ko 2016 [10] 
Parallel FFAU and ECPM on 

Koblitz 

Parallelization of L-D 

ECPM for Koblitz curves 
Virtex 5  
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Fig. 2: The previous work comparison 

 

 
Fig. 3: A top-level architecture for ECCP 

 
 

Fig. 4: The proposed ECCP architecture design 

 
Fig. 5: Optimized Point Addition/Doubling unit 
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POINT MULTIPLICATIONUSING MONTGOMERY LADDER 

[10, 22]  

One of the most efficient point multiplication which is based 

on LD projective PA and PD group operations is 

Montgomery ladder scalar multiplication [10, 22]. 

Algorithm 6 depicts an EC scalar multiplication method 

using Montgomery ladder where the curve point P = (x, y), 

Q = kP  represented by (xk , yk ) . PA  Za , Xa =
Add(X1 , Z1, X2 , Z2, x) is given by:   

𝐙𝐚 = (𝐗𝟏𝐙𝟐 + 𝐗𝟐𝐙𝟏)𝟐 and 

 𝐗𝐚 = 𝐱𝐙𝐚 + (𝐗𝟏𝐙𝟐)(𝐗𝟐𝐙𝟏) 

and for P  𝐗𝐝, 𝐙𝐝 = 𝐝𝐨𝐮𝐛𝐥𝐞(𝐗𝐢, 𝐙𝐢, 𝐛) 

we have: 𝐙𝐝 = 𝐗𝐢
𝟐𝐙𝐢

𝟐 and 𝐗𝐝 = 𝐗𝐢
𝟒 + 𝐛𝐙𝐢

𝟒 

Algorithm 6 shows an EC point multiplication using the 

Montgomery ladder method [17]. In algorithm 6 only one 

inversion operation, INV xZ1Z2 = (xZ1Z2)−1 is required. 

 

INVERSION ALGORITHMUSING ITOH-TSUJII (ITA) 

In Eq. 7 and Eq. 8 the inversion (xZ1Z2)−1  is employed 

using Itoh-Tsujii algorithm (ITA) reported in [12, 15, 17, 

19]. The hardware implementation of the inversion inside 

conversion step in several research work has often use ITA 

for the point multiplication which is adopted in this work as 

well. ITA is summarized in Algorithm 7: 

3. RELATED WORK 

Several FPGA based hardware implementations for elliptic 

curve cryptosystem processor (ECCP) were suggested in 

literature [17 - 27] few of them aimed for low-end devices 

[22]. However, there is an equally important need for stand-

alone ECCP engines in small constrained devices, like 

sensor networks and mobile devices [14]. Most 

implementations focus on minimizing speed and area of the 

PM on binary EC [17]. A pipeline digit-serial GF multiplier 

was used in Montgomery ladder GF(2
163

) & GF(2
233

) PM 

design by Rashidi et.al. [17]. El-Sisi et. al. [18] used a 

modified binary Karatsuba-OfmanGF(2
191

) multiplier with 

Montgomery PM in projective coordinate. Ismail [22] 

implemented Left-to-right binary PM in Lopez-Dahab (LD) 

projective coordinate with digit-serial. Ansari & Hasan [25] 

implemented Montgomery ladder PM with pseudo-pipelined 

word-serial. Khan &Benaissa [26] proposed an ECC 

architecture with one and three pipelined multipliers based 

on a modified LD Montgomery PM. Imran et. al. [27] 

presented a modified PA and PD for PM based on 

Montgomery algorithm. Different FPGA based hardware 

implementations of the point multiplication on binary 

elliptic curve have been summarized as depicted in Table 2. 

In [30], the parallel architecture depends on using the 

Montgomery ladder for field GF 2191  but with Karatsuba-

Ofman for the polynomial multiplier and Extended 

Euclidian Algorithm (EEA) for the inversion. However, the 

work in [31] presented an ECCP architecture design for IoT 

securityusing the Montgomery ladder algorithm running 

sequentially. All previous works results appeared in Fig.2. 

 

4. AREA/TIME OPTIMIZATION 

4.1 THE PROPOSED ECCP DESIGN 

This work has implemented all the algorithms that have 

designated in the preceding sections to design the proposed 

ECCP. This can help to use only one functional unit of the 

GF(2m ) ALU of the ECCP as shown in Fig. 3; where m 

may be 163 or 409. 

The top-level architecture consists of a control unit, Block 

RAM (BRAM), and a point addition/doubling unit as shown 

in Fig. 4. The control unit receives the EC parameters, reads 

a key (or a scalar), and controls the point addition/doubling 

unit according to the binary double and add point 

multiplication algorithm shown in 2.2. Design point 

addition/doubling unit, on the other hand, is responsible for 

computing all required field arithmetic operations. We 

assume that at the beginning of the scalar multiplication 

operation the BRAM contains the scalar and a projective EC 

point as it considers fast access FPGAs read/write memory. 

These values must be maintained during the iterations of EC 

scalar multiplication. The point addition/doubling unit 

designed for computing the scalar multiplication algorithms. 

Fig. 4 shows architecture for the proposed ECCP design. 

4.2 OPTIMIZING ADDITION/DOUBLING UNITVIA 

FORWARDING PATHS 

An optimal PA/PD unit is illustrated in Fig. 5. Its main three 

units which constitute the GF(2
m
) addition, multiplication, 

and squaring operations. 

In addition to the two multiplexers (MUX3) and 

(MUX4) used to accomplish the forward paths from one 

finite arithmetic unit to another. These multiplexers are 

controlled by two signals DSel and ESel. The operands are 

stored in the register file which consists of four to six 

registers with output being selected for A, and B using 

multiplexer (MUX1) with control signals (Asel, and Bsel). 

These signals addressed from the control unit shown in Fig. 

4. Moreover, the proposed ECCP design aims to obtain 

efficient registers number for various explicit formulas 

appearing in [22] for low-area ECCP design. The forward 

liveness analysis methodology [22] main emphasis is to 

expose a forward data-path entity that take place between 

the functional units (e.g. finite field squarer (S) multiplier 

(M) and adder (A)) and the register file. In theory, any path 

from root to leaf states gives a valid sequence requiring a 

minimum number of registers to complete execution [26]. 

Also, an effective execution order which achieves a 

maximum amount of short live variables to efficiently use 

forward path. 

5. IMPLEMENTATION RESULTSAND COMPARISON 

The developed ECCP over  GF(2163 ) and GF(2409 ) system 

has been implemented entirely in RTL-level VHDL and 

Integrated Synthesizing Environment (ISE). For fair 

comparison with the other architectures presented in the 

literature [27], the code has been synthesized and 

implemented on FPGAs using Virtex-6 XC6VLX760. 
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5.1 IMPLEMENTATION RESULTS 

SQUARINGAND REDUCTION OPERATIONS: 

The squaring and reduction implementation result over 

GF(2163 ) and over GF(2409) are shown in Table 3. 

 

POLYNOMIAL MULTIPLIERS: BIT PARALLEL 

A GF(2163 )  and a GF(2409)  binary polynomial multipliers 

based on bit parallel digit-serial have been proposed in this 

architecture, see Table 4. 

 

MODIFIEDRIGHT-TO-LEFT 𝐆𝐅(𝟐𝟏𝟔𝟑) AND 𝐆𝐅(𝟐𝟒𝟎𝟗) 

MULTIPLICATIONS 

A parallel implementation using Karatsuba-Ofman to reduce 

the latency is shown in Table 5 (time optimization). 

Pipeline technique in GF(2163 ) and in GF(2409) polynomial 

multipliers (area optimization) are illustrated in Table 6. 

INVERSION 

Fig. 6 illustrates the implementation of the inversion ITA 

[17]. 

 

Fig. 6: Itoh-Tsujii architecture 

PA & PD IN PROJECTIVECOORDINATE:  

Fig. 7 shows PA & PD architecture.Architecture with one 

and three pipelined multipliers based on a modified LD 

Montgomery PM is illustrated in Table 7. 

SCALAR MULTIPLICATIONIN PROJECTIVE COORDINATE:  

Fig. 8 shows the implementation of scalar multiplication 

architecture. 

PARALLEL IMPLEMENTATION OF MONTGOMERY LADDER 

The proposed ECCP depend on the parallel implementation 

for the Montgomery scalar algorithm which uses 3 unit for 

polynomial multiplier. The operation of point addition and 

point doubling take two stage to complete in this proposed 

architecture. Table 8 shows the results of Montgomery 

parallel implementation. 

5.2 COMPARISONWITHSTATE-OF-THE-ART 

Table 9 shows a relatively architecture enhancement results 

which has been obtained by this work compared with state-

of-the-art PM implementations. 

6. A CRYPTOGRAPHY PROTOCOL 

The security of Automated Teller Machines (ATMs) is 

necessary because it has become one of the essential 

elements in human life. Also, securing banking transactions 

is one aspect that many researchers are interested in 

cryptography theory and mechanisms. Financial transactions 

need to insurance and make sure that hackers cannot change 

data and even steal its contents [32]. The security between 

two channels need some aspects like confidentiality, data 

authentication, data authorization as well as data integrity 

and nonrepudiation. So, the ATMs security and related smart 

cards can be investigated as a cryptography protocol. 

As indicated in Fig. 9, each ATM has two security 

weakness; one attack is on the ATM itself and another attack 

is on the network existed between the ATM and bank 

computers. These weaknesses need to be strengthened using 

cryptography secure mechanisms to protect data from 

unauthorized use. An ECCP which is used to change 

message or data from one cipher form to another can be used 

with the basic key generation and exchange protocol [32]. 

This security key can be used in the authentication process. 

As well as a fast and small size key generation, several 

mechanisms can be added with elliptic curve cryptography 

like biometric to make a high assurance verification for 

ATM bank transactions. 

ATMs allow customers to perform most banking services 

including withdrawing, depositing, transferring funds and 

checking account without bank employees. ATMs operate 24 

hours for customer services and each of them has a small 

display and either touch screen or input devices for entering 

inputs. Steps of a secure financial transaction is showed in 

Fig. 10. A typical ECCP as an embedded system with ATMs 

is illustrated in Fig. 11. 

 

 

Fig. 9: The possibility attacks on smart cards and ATM 

machines  
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Fig. 10: ATM transaction steps taken from [33]. 

 
Fig. 11: ATM communication with other devices taken from 

[33]. 

The security of an ATM is based on using smart cards 

which may be contact, contactless, and hybrid cards. The 

hybrid cards can operate in either contact or contactless 

mode. Contact cards mean insert a smart card inside an 

ATM, and then read and store the account information 

recorded on magnetic strips on that card. The control unit 

starts the execution of the encryption unit to convert the 

card’s information to a cipher text and send it to bank 

computers for verification. The same manner is occurred for 

contactless cards, but it is based on RFID sensors. The 

RFID tag was used to present the machine card reader which 

is read the magnetic strip on the card. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. CONCLUSIONAND FUTURE WORK 

 

In this work, there is a trade-off between the execution time, 

minimum number of registers (area overhead) and security 

over GF(2
163

) and GF(2
409

). Hence, the implementation is 

compared with state-of-the-art which shows a relatively 

improvement in the execution time for the same algorithmic 

architecture. These results show that, optimizing area/time 

of the ECCP requires the registers inside the multiplier and 

the number of modules of functional units be minimum. The 

high-performance demand and minimizing the FU power 

dissipation mandate the next step of this work must 

guarantee that the multipliers are, nearly, at no time left idle. 

On the other hand, this is an indication that the future work 

needs to address how to develop a methodology to optimize 

the amount of power dissipation by the finite field 

multiplier. There is a definite possibility that reducing the 

area requirements may significantly increase the reduction 

of total power consumption dissipated by the optimized 

design by fitting a smaller FPGA device. It is certain that 

this will cause more reduction specially in leakage power. 

The next step of this research is to impose an authentication 

scheme based on ECCP for IoT and embedded devices 

which satisfies all security requirements and is immune to 

various types of attacks [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Squaring and reduction operations 

Operation # of occupied LUTs # of occupied Slices 
Latency (Virtex-6 

XC6VLX760) 

Squaring 163 bit 0 0 0.345 ns 

reduction (one bit at a 

time) 
164 89 1.616 ns 

Fast reduction 165 146 1.267 ns 

Squaring 409 bit 0 0 0.345 ns 

Fast reduction 285 187 9.977 ns 

 

Table 4: Results of the bit parallel Multipliers 

Operation Digit size in bits Frequency in MHz # of occupied Slices Time in ns 

Bit parallel 163 - 4,123 4.69 

Pipeline Digit serial  82 380.12 2,718 5.26 

Pipeline Digit serial 42 408.69 1,497 9.78 

Bit parallel 409 - 17,560 5 

Pipeline Digit serial  205 276.095 9,907 7.5 

Pipeline Digit serial 102 281.597 4,813 15 

 

Table 5:Karatsuba-Ofman for PM in 𝐺𝐹(2163 ) and for PM in 𝐺𝐹(2409) 

Operation # of parallel operations # of occupied Slices Latency (Virtex-6 XC6VLX760) 

Basic (82 bit) 2 4,715 18.711 ns 

Basic (42 bit) 4 4,584 10.665 ns 

Basic (22 bit) 8 4,600 6.845 ns 

Basic (102 bit) 4 7,324 27.504 ns 

Basic (52 bit) 8 7,275 13.517 ns 

Basic (24 bit) 16 7,075 8.213 ns 
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Table 6: Pipelined digit serial K-O for PM in 𝐺𝐹(2163 ) and for PM in 𝐺𝐹(2409 ) 

Operation # of parallel operations # of occupied Slices Latency (Virtex-6 XC6VLX760) 

basic(163bit) 1 281 489 ns 

basic (42 bit) 4 612 108.609ns 

basic (22 bit) 8 1237 54.264ns 

basic (12 bit) 16 2268 26.257ns 

basic (6 bit) 32 4400 11.452ns 

basic(409bit) 1 628 968 ns 

basic (204 bit) 2 1325 658ns 

basic (22 bit) 8 2843 369ns 

basic (12 bit) 16 4228 184ns 

basic (6 bit) 32 8764 95ns 

 

 
Fig. 7: The Point Addition and Point Doubling architectures 

Table 7: The inversion results 

Operation PM algorithm # of Slices Frequency in MHz 
Latency (Virtex-6 

XC6VLX760) 

Itoh-Tsujii K-O on RTL 46198 ---- 219.398 ns 

Itoh-Tsujii 

(pipeline) 
K-O on RTL 4201 225.7 360 ns 

Itoh-Tsujii 

(pipeline) 
Bit parallel multiplier 4602 458.6 315 ns 

Itoh-Tsujii 

(pipeline) 
K-O on RTL 7806 257.3 608 ns 

Itoh-Tsujii 

(pipeline) 
Bit parallel multiplier (DS = 52) 5,657 296.845 504 ns 

 

Table 8: Montgomery ladder algorithm for generic ECCP 

Type of PM Power in mW Digit Size in bits Frequency in MHz # of Slices Time (s) 

Bit parallel   5237.00 DS = 163 369.5 19,824 1.9 

K-O shift& add 7440.74 DS = 163 151.9 14,068 3.583 

Bit parallel   2115.00 DS = 52 253.770 18,807 29 

Bit parallel   1824.25 DS = 26 317.140 12,630 59 
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