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Abstract— In different neutron measurement 

experiments, it is necessary to apply pulse 

processing method to distinguish neutron pulses 

from gamma pulses. The discrimination process is 

based on the different decaying response of the 

detector for both neutron and gamma events. 

Different proposed algorithms are presented in this 

paper for determining the radiation type of detector 

output. In the proposed algorithms, features are 

extracted from the input radiation event. These 

features are extracted using charge integration, 

Hilbert transformation, and matched filtering 

methods. The extracted features are then fed the 

discriminator which is an Artificial Neural Network 

(ANN) or Support Vector Machine (SVM) 

discriminators. The obtained results prove that, the 

proposed approaches can be used efficiently for the 

neutron and gamma discrimination purpose and 

that method based on the Hilbert transformation 

achieves the highest discrimination rates. 

Keywords: Neutron and Gamma Rays Discrimination, 

PSD, SVM, ANN 

11..  IInnttrroodduuccttiioonn  

Scintillators are used for the detection purpose of 

neutron radiation from an accelerator or from a research 

reactor in the presence of a high degree of gamma 

background. Therefore, for nuclear physics applications, 

discriminating neutron events from the background gamma 

ones is a very vital process. It based on the fact that gammas 

are detected with faster scintillation response compared to 

neutrons as shown in Fig. 1. The traditional Pulse Shape 

Discrimination (PSD) includes the two widely used methods 

of rising time of the detector output events. The time 

intervals between two different amplitudes of the pulse is 

measured and used for the first method [1]. The comparison 

of relative amount of emitted light during its slow and fast 

components is the basis for the other method [2].  

 
Figure (1): Decay from neutron and gamma induced 

scintillation pulses. 

The traditional analogue PSD has been replaced by 

the digital PSD due to the availability of high-speed 

waveform digitizers. Therefore, complicated data analysis 

that are not accessible in analogue systems can be acquired. 

For example, S. D. Jastaniah et al. [3] used the digital pulse 

rise time to achieve good n/γ discrimination in boron loaded 

liquid scintillator. In 2014, Abdullah Al-Shbatat [4] used 

different numerical methods like trapezoidal, Simpson’s, 

and rectangular integration methods pulse integration and 

used its value for the discrimination. Simpson’s and 

Trapezoidal results reveal superiority for PSD although they 

didn’t give completely discrimination at low energies. 

Recently, Chuan et al. [5] presented four neutron-

gamma discrimination methods with EJ-301 scintillator. The 

four methods are Charge Comparison (CC), threshold 

Crossing Time (TCT), Correlation Pattern Recognition 

(CPR), and Pulsed Gradient Analysis (PGA) methods. The 

CPR and CC methods have good discrimination but limited 

at low energy threshold. The CC strongly depends on 

linearity and deformation of the pulse tail. Qiao et al. [6] 

used the convolution neural networks to discriminate double 
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beta decay signal and background from high energy 

gammas.  

Liang et al. discus the effect of the temperature 

variation on the PSD result for a designed array of Silicon 

Photo-Multiplier (SiPM) coupled to Lithium-loaded 

scintillators. Results indicated that a poorer discrimination is 

obtained at high temperatures because of the thermal noise 

in SiPMs [7]. Yang et al. investigated and compared four 

FPGA-based digital PSD methods. The included methods 

are CC, Pulse Peak Analysis (PPA), PGA, and finite 

impulse response Filter Comparison Method (FCM) [8].  

Yang et.al [9] incorporated Li into the matrix of NaI under 

an optimized crystal growth process for efficient neutron 

detection. They demonstrated the use of exceptional 

gamma-neutron PSD. 

This paper presents different proposed algorithms for 

the PSD process of neutron and gamma pulses by applying 

different signal processing techniques. The reset of the 

paper is organized as follow; Section 2 presents the 

traditional method for PSD. Section 3 presents the different 

algorithms that proposed for PSD. Simulation results and 

the comparison between the traditional and proposed 

method are illustrated in Section 4 

2. Traditional PSD based on Charge-Integration 

Method 

The traditional technique is based on using a charge-

integrating Analogue to Digital Converter (ADC) and two 

windows with different size [2]; one to integrate the entire 

charge of the pulse, and the other to integrate its tail 

component. This method takes advantage of the difference 

in time distribution between neutron and gamma pulses. The 

selected size of the windows is based upon the measurement 

setup and can differ from one setup to another. Similar 

techniques have been proposed by researchers [10-17]. 

These methods are selected to be consistent with the 

expected time distribution for a neutron or a gamma. 

The integral ratios R of Eq. 1 for the two pulse intervals, one 

covering the tail and the other covering the whole pulse 

have been calculated [11]. These two intervals are shown in 

Fig. 2 where T1 is the starting point of the total integral (A1), 

T2 is the starting point of the tail integral (A2) and Tend is the 

ending point of both. Since neutron pulses have a larger 

fraction of light in the tail, a larger ratio R will be obtained 

for neutrons compared to γ-rays. The estimated value R is 

used accordingly as a discriminating feature that used to 

distinguish neutron pulses from γ-ray pulses. 

R =
tail  integral

total  integral
=

A2

A1
                                     (1) 

 
Fig. 2: Tail and total pulse integral regions for traditional 

charge-integration method  

3. Proposed PSD Methods 

PSD process is based on the fact that neutron and gamma 

produce light scintillations with significantly different decay 

characteristics. A general proposed technique based on 

using different tools of signal processing for extracting 

features consists of two phases; a training phase and a 

testing phase as configured in Fig. 3. The extracted features 

are used to build a database model for each signal type 

during the training phase. The radiation type of the applied 

pulse is determined during the test phase using a feature 

matching process. 

 

Fig. 3: General block diagram of the proposed algorithms 

for PSD 

3.1 Data Description 

The proposed PSD methods are evaluated using 

simulated input signals generated using MATLAB 

environment. The mathematical fitting model presented in 

[18, 19, 20] is used for these generation. To observe the 

ability of the proposed approaches at lower and higher 

energies, the height of the simulated pulse is chosen to cover 

these energy bands [11, 12]. The generated signals are 

assumed to be digitized with 0.1 ns sampling time. 

The applied database consists of 3500 gamma events and 

2900 neutron events with different energies. The different 

discriminator of the proposed and the traditional algorithms 

are trained using 40% of the input database of neutron and 

gamma pulses. The training pattern are selected to include 

the different energy band of the neutron and gamma 

radiation pulses. Also the discriminators of all algorithms 
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are tested with the whole database of input gamma and 

neutron pulses contaminated with Additive White Gaussian 

Noise (AWGN) with different values of Signal-to-Noise 

Ratio (SNR). The effect of pulse height variation on the 

performance of the proposed algorithms is studied by 

normalizing the applied input data using Eq. (2) as shown in 

Fig. 4,  where x(n), min(x(n)), and max(x(n)) are 

respectively the applied radiation event, its minimum and 

maximum values. The proposed algorithm is then applied 

separately to both the direct and the normalized database. 

                  x n =
x n −min ⁡(x n )

[max  x n  −min ⁡(x n )]
                              (2) 

 

 
Fig. 4: Normalized plot of neutron and gamma induced 

scintillation pulses 

3.2 Features Extraction  

The process of feature extraction process is performed using 

different tools of signal processing in both phases. This 

paper discusses the ability of these tools to reduce the effect 

of noise in order to increase the discrimination rates. 

3.2.1 Feature Extraction using Matched Filter  

Matched filter is used frequently at receiver stations and is 

considered as a linear filter designed with the ability to 

detect the presence of waveform with known structure 

buried in noise. It hence maximizes the SNR of the detected 

signal as it responds by a sharp peak for the existence of the 

desired input pulse. The impulse response h(t) and 

frequency response H() of the matched filter is deduced 

using the configured system of Fig.5. 

  

 

 

 

 

Fig. 5: Basic matched filter. 

 

Matched filter of this system is represented as linear time 

invariant (LTI) system with input corrupted with noise n(t). 

Accordingly, the system output consists of a signal 

component y(t) and a noise component no(t) which can be 

estimated as [21]: 

y n = x n ⊛ h n =  X k H k  ei
2π

N
kn   ,   n =N−1

k=0

0,1, … , N − 1         (3) 

no n = n n ⊛ h n =  N k H(k)ei
2π

N
knN−1

n=0 ,   n =

0,1, … , N − 1         (4) 

Equation (5) represents signal power component of matched 

filter output expressed in terms of its amplitude at sample 

nd. The average noise power at the output of LTI system 

also can be estimated as in Eq. 6 in terms of spectral density 

Sn(k) of the added noise as [21]:  

            y(nd ) 2 =   X k H k  ei
2π

N
knd   N−1

k=0  
2

                   (5) 

 no (n) 2 =  Sn (k) H(k) 2   N−1
k=0                                         (6) 

The SNR at the matched filter output is then can be 

estimated as [21]: 

SNR =
 y(nd ) 2

 no (n) 2
=

  X k H k  e
i
2π
N k n d   N −1

k =0  

2

 Sn (k) H(k) 2   N−1
k =0

                         (7)  

Making use of a Schwartz inequality relationship and with 

some simplifications, the maximum SNR at time nd can be 

obtained when the system frequency response satisfies [21]: 

    H k = C.
X∗(k)

Sn (k)
e−i

2π

N
knd , k = 0,1, … , N − 1                            

(8) 

Where C is a real constant, usually positive and often set to 

unity. For a white noise with zero mean, Sn(k) is constant 

and hence the filter impulse and frequency response 

becomes [21]:  

H k = C. X∗(ω)e−jωtd                                  (9) 

h n = C x∗(nd − n)                                  (10) 

The final result indicates that the matched filter impulse 

response that enhances SNR is the time reversal of its input 

signal. Therefore optimum filter of the proposed PSD 

algorithm will have two forms to reduce the effect of noise 

in the discrimination process. The first one is the time 

reversal of a gamma pulse and the other is the time reversal 

of a neutron pulse. The different matched filter output is 

then used by the discriminator for the discrimination 

process. 

3.2.2 Discrete Time Analytic Signal using Hilbert 

Transform  

In signal processing, the Hilbert transform is a 

specific linear operator that takes a real function, x(t) and 

produces another function of H(x(t)). This linear operator is 

a (± π/2) phase-shift as the German scientist David Hilbert 

indicates. He showed that the function sin(n) is the Hilbert 

transform of cos(n). The Hilbert transform shown in Eq. 

11 can be thought as the convolution of x(n) with the Hilbert 

transformer h(n)=1/(πn), known as the Cauchy kernel.  

H x n  =  x k h n − k N−1
k=0 =

1

π
 

x(k)

n−k

N−1
k=o    ,   

n=0,1,…,N-1         (11) 

A real function x(n) and its Hilbert transform are related to 

each other in such a way that they together create a so called 
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strong analytic signal which can be written with amplitude 

and phase components. The analytic signal for a sequence 

has a one-sided Fourier transform. To get an approximate 

estimate of the analytic signal, Hilbert calculates the FFT of 

the input sequence. The coefficients of negative frequencies 

are then replaced with zeros. Finally, the approximate is the 

inverse FFT. It is a simple algorithm for instantaneous 

frequency extraction of a signal. Also, Hilbert transform is 

useful for envelope detection of a signal. 

3.3 Discriminator 

Discriminator is the final stage in both phases of the PSD 

algorithm that uses the extracted features using the different 

tools to classify the applied inputs to their types. Two 

discriminators are considered for this work, ANN and SVM 

[22]. To determine which of them is suitable for 

discrimination, a comparison between the obtained results is 

performed. 

3.3.1 Discrimination using Artificial Neural Networks. 

A Multi-Layer Perceptron (MLP) neural network is used for 

feature matching process. It consists of three layers; input, 

hidden and output layers. The input layer has an input vector 

X which is a vector of the discriminating features with size 

differs based on the used signal processing tool. The used 

hidden layer of the ANN has 125 neurons. The output vector 

is a vector containing an output for each signal type, so the 

output vector in this approach consists of two outputs. The 

network weights are adjusted during training by minimizing 

the sum of the squared error between the desired output Do 

and the actual output Yo given by [23, 24]:   

E =
1

2
  Do − Yo 2O

o=1                                    (12) 

Where, O is the number of neurons in the output layer. The 

network weights that have acceptable value of E are used to 

build a database model for each radiation type. During 

testing phase, features are extracted from a noisy database 

using the different estimation tools, then a feature matching 

between the extracted features and the saved database 

models is performed. The last stage in the recognition 

system is the decision making that takes the matching score 

as its input and makes the final decision about the type of 

radiation. 

3.3.2 Discrimination using Support Vector Machine. 

SVMs are a set of related algorithms of supervised learning 

used for discrimination and regression [25]. They are 

considered one of the generalized linear identification 

families. SVMs are characterized by a special merit where 

they achieve maximum margin with maintaining a 

minimized error of identification. So SVMs are called 

maximum margin discriminators. Maximal separating 

hyperplane is constructed by mapping an input vector to a 

higher dimensional space. On each side of the hyperplane 

that separates the data, there will be a parallel hyperplane. 

The separating hyperplane is the one that maximizes the 

distance between the two parallel hyperplanes. SVs are 

those training points which laying on one of the two 

hyperplanes, and whose removal would change the solution 

found [25]. 

4. Results and Discussion 

MATLAB simulation environment has been used for the 

verification of this proposed PSD algorithms. 

Discrimination rate and error have been used as a 

performance metric for the discrimination methods. The 

discrimination rate is mathematically described by Eq. 13 

which represents the ability of the method to discriminate 

the signals correctly even in high noisy environments. 

Discrimination rate = 

Number  of  success  discrimination

total  number  of  discrimination  trials
∗ 100        (13) 

Another metric called discrimination error is used to clarify 

the ability of the proposed methods to discriminate one type 

of the signals while it failed to discriminate the other type. 

The performance of the proposed algorithms is studied by 

adding AWGN to the database with different SNRs. The 

following sections illustrate results of applying the 

traditional and the proposed PSD methods to direct and 

normalized signals separately using ANN and SVM. 

4.1 ANN Discriminator Results 

In this section, features from a noisy database have been 

extracted and applied to an ANN of an input layer with a 

different size based on the discrimination method, a hidden 

layer of 125 neurons, and an output layer of two neurons. 

The discrimination has been performed using both direct 

and normalized noisy database. 

The discrimination results obtained using the traditional 

method with ANN for both direct and normalized database 

is shown in Table (1). The normalization process as 

indicated disturbs the obtained results largely as it scales the 

area under the pulse by a factor equal to the difference 

between its maximum and minimum values resulting in a 

reduction of the area difference between pulses. 

Accordingly, the discrimination is degraded since the main 

factor of the discrimination is this area value. The indicated 

results confirm the ability of the method in discriminating 

gamma signals with a very small percentage of error in case 

of applying the method on the direct signal. But, it fails in 

identifying neutron pulses with the same small percent of 

error.  

The discrimination result obtained from using a matched 

filter with a transfer function equals to the time reversal of a 

radiation gamma pulse is indicated in Table 2. It shows a 

slight enhancement in the discrimination rates compared to 

the traditional method results of table (1) for both direct and 

normalized input pulses. Also it confirms the same 

conclusion where the process of normalizing the radiation 

pulses before applying the PSD method, negatively affect 

the discrimination results. The obtained results for the case 

of pulse normalization as shown did not improved until a 

value of SNR equals to 25 dB. Comparing the results of 

table (1) with table (2) indicates that, applying matched 

filter for PSD reach a full percentage of identification at 15 

dB compared to 20 dB for the traditional charge integration 

method. So, matched filter with this impulse response 

slightly improves the discrimination process. 
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Table (1): Discrimination results using traditional method with ANN 

SNR 

(dB) 

Discrimination rate 

(%) 

Discrimination error   (%) 

Gamma 

misclassification 
Neutron misclassification 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 
-20 51.1364 49.7253 8.4291 25.0624 40.4346 25.2123 

-15 52.4600 50.6618 8.2667 24.7003 39.2732 24.6379 

-10 55.7443 50.4121 7.4301 24.6628 36.8257 24.9251 

-5 59.9401 51.0365 5.6818 24.6004 34.3781 24.3631 

0 68.8811 51.5609 3.9336 24.1758 27.1853 24.2632 

5 82.8172 51.9481 2.1354 23.3267 15.0475 24.7253 

10 95.8916 53.9835 0.2997 23.1893 3.8087 22.8272 

15 99.7378 55.2448 0.0125 22.8646 0.2498 21.8906 

20 100 59.0160 0 21.7782 0 19.2058 

25 100 66.7582 0 19.0435 0 14.1983 

30 100 77.1104 0 15.0724 0 7.8172 

35 100 89.3232 0 8.3541 0 2.3227 

40 100 97.4525 0 2.3976 0 0.1499 

45 100 99.9001 0 0.0999 0 0 

50 100 100 0 0 0 0 

 

Table (2): Discrimination results using gamma based matched filter with ANN  

SNR 

(dB) 

Discrimination Rate 

(%) 

Discrimination error   (%) 

Gamma 

misclassification 

Neutron 

misclassification 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

-20 54.3457    50.1124  19.1434     0.8242  26.5110    49.0634 

-15  55.8941 50.1249 17.9695 0.9615    6.1364    48.9136 

-10 61.0639    50.1499 15.8716     0.8367    3.0644    49.0135 

-5 68.5814    50.3996 13.6614     0.6993    7.7572    48.9011 

0 79.2458    50.4745 9.1034     0.7867 11.6508    48.7388 

5 91.9580    50.8492 3.0969     0.6369    4.9451    48.5140 

10 99.1508    51.5984 0.2248     0.5495 0.6244    47.8521 

15 100    52.4975 0     0.4870 0    47.0155 

20 100 55.8816 0     0.2248 0    43.8936 

25 100    63.0120 0     0.0874 0    36.9006 

30 100    74.6628 0     0.0250 0    25.3122 

35 100    90.5470 0 0 0     9.4530 

40 100 99.1384 0 0 0 0.8616 

45 100 100 0 0 0 0 

Table (3): Discrimination results using Neutron based matched filter with ANN  

SNR 

(dB) 

Discrimination Rate (%) 

Discrimination error   (%) 

Gamma 

misclassification 

Neutron 

misclassification 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

-20 53.0220 52.2353 21.0415    25.7617 5.9366    22.0030 

-15 54.3831    52.4725 20.7542 25.8991 4.8626    21.6284 

-10 57.0554    56.7807 19.2682    23.1893 3.6763    20.0300 

-5 63.4740    61.0265 16.9955    20.6419 9.5305 18.3317 

0 73.2018    70.8042 12.0629    14.8477 4.7353    14.3482 

5 85.7393    82.0180 6.4935     8.4291 7.7672     9.5529 

10 96.6533    94.4306 1.2987 1.9106 2.0480 3.6588 

15 99.8501 99.5380 0.0125 0.050 0.1374 0.4121 

20 100 100 0 0 0 0 
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Table (4): Discrimination results using Hilbert transformation with ANN discriminator 

SNR 

(dB) 

Discrimination Rate 

(%) 

Discrimination error   (%) 

Gamma 

misclassification 

Neutron 

misclassification 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

-20 56.2313       52.1229       22.4026     24.4880    21.3661    23.3891      

-15 60.6269   54.1334 21.2662    23.2892    18.1069    22.5774    

-10 69.2058    57.4301    17.2577    22.1903    13.5365     20.3796 

-5 82.1928 62.8247    11.9755     19.9925    5.8317     17.1828    

0 93.2443    71.1913    5.6319    16.1963    1.1239     12.6124     

5 99.2507 82.5425    0.7368 11.1139     0.0125 6.3437     

10 0 95.5919    0 3.6588     0 0.7493          

15 0 99.7627   0 0.2373 0 0 

20 0 100 0 0 0 0 

Table (5): Discrimination results using traditional method with SVM discriminator  

SNR 

(dB) 

Discrimination Rate 

(%) 

Discrimination error   (%) 

Gamma 

indiscrimination 

Neutron 

indiscrimination 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

-20 57.2802 55.78172 21.229 22.85215 21.491 21.36613 

-15 62.8871 59.62787 18.244 21.74076 18.8686 18.63137 

-10 71.1663 66.13387 13.437 19.08092 15.3971 14.78521 

-5 84.2158 75.28721 6.5934 15.85914 9.19081 8.85365 

0 96.1913 87.25025 1.2987 9.37812 2.50999 3.37163 

5 99.8626 95.54196 0.0125 3.97103 0.12488 0.48701 

10 100 99.13836 0 0.83666 0 0.02498 

15 100 99.93756 0 0.06244 0 0 

20 100 100 0 0 0 0 

Table (6): Discrimination results using gamma based matched filter with SVM  

SNR 

(dB) 

Discrimination Rate 

(%) 

Discrimination error   (%) 

Gamma 

misclassification 

Neutron 

misclassification 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

-20 63.14935 58.59141 19.543 19.85514 17.3077 21.55345 

-15 71.09141 65.27223 16.084 16.12138 12.8247 18.60639 

-10 83.52897 77.75974 10.527 10.15235 5.94406 12.08791 

-5 93.84366 91.28372 4.8951 3.15934 1.26124 5.55694 

0 98.85115 98.81369 1.1114 0.13736 0.03746 1.04895 

5 99.92507 99.98751 0.0749 0 0 0.01249 

10 100 100 0 0 0 0 

Table (7): Discrimination results using Neutron based matched filter with SVM  

SNR 

(dB) 

Discrimination Rate 

(%) 

Discrimination error   (%) 

Gamma 

misclassification 

Neutron 

misclassification 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

-20 62.3626 59.17832 19.5430 21.07892 18.0944 19.74276 

-15 72.1903 67.75724 16.0839 18.20679 11.7258 14.03596 

-10 83.9036 76.09890 10.5270 14.81019 5.56943 9.09091 

-5 94.0559 88.24925 4.8951 8.42907 1.04895 3.32168 

0 98.8137 95.62937 1.11139 3.85864 0.07493 0.51199 

5 99.9501 99.27572 0.07493 0.72428 0.04995 0 

10 100 99.95005 0 0.04995 0 0 

15 100 100 0 0 0 0 

Table (8): Discrimination results using Hilbert transformation with SVM  

SNR 

Discrimination Rate 

(%) 

Discrimination error   (%) 

Gamma 

misclassification 

Neutron 

misclassification 
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Table (3) summarized the discrimination results obtained 

from using matched filter with a transfer function equals to 

the time reversal of radiation neutron pulse. It approximately 

did not improve the performance compared to results of 

table (2) for matched filter based on gamma pulse that has 

slightly better discrimination performance. The obtained 

results for a normalized database have been improved 

compared to table (1) and (2). However, slightly better 

results are still obtained when using direct signal. Generally, 

applying matched filter with a transfer function equals to the 

time reversal of a gamma radiation pulse on the direct 

database signals performs better. 

Table (4) shows the discrimination results of applying 

Hilbert transform on both direct and normalized database. 

The performance as shown in this table has been improved 

compared to the charge integration and matched filter based 

methods. Hence, in case of using ANN discriminator, it is 

useful to apply this transformation for the PSD of neutron 

and gamma events especially when these events are detected 

at high noisy conditions.  

4.1 SVM Discriminator Results 

In this section, SVM with a linear kernel function has been 

used as a discriminator instead of the ANN discriminator. 

Tables (5) to (8) show the discrimination results using the 

same methods with SVM.  

The obtained results of tables (5) to (8) reveal the same 

conclusion where applying the normalization process didn’t 

enhance the discrimination performance as the case when 

using direct not normalized inputs. Although the process of 

normalizing input data reduce the effect of the different 

energy value of the applied signals, it also increases the 

similarity between them and hence minimizes the 

discrimination rate. 

It is clear from the obtained results that, applying Hilbert 

transformation succeeded efficiently for discriminating the 

type of the input radiation. The other signal processing tools 

can be used also for this purpose, but with slightly larger 

discrimination errors. The SVM discriminator results agree 

with the same approved idea by ANN results that, 

normalizing the input database before applying the 

discrimination process does not improve the performance of 

the traditional and the matched filter based discrimination 

methods. Also, to decide which type of discriminators gives 

the highest discrimination rates, the obtained results using 

SVMs as discriminator are compared with that obtained 

using ANNs.  

 

 

 

 

 

The comparison proved the superiority of SVM 

discriminator as they achieved better performance than the 

ANNs discriminator at the same noise level. Utilizing the 

SVM discriminator achieves another advantage as it needs 

slightly shorter discrimination times than the ANN 

discriminator. Accordingly, it is preferable for good PSD to 

apply the Hilbert based method on the input database with 

the use of the SVMs discriminator.  
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Table (8): Discrimination results using Hilbert transformation with SVM  

SNR 

(dB) 

Discrimination Rate 

(%) 

Discrimination error   (%) 

Gamma 

misclassification 

Neutron 

misclassification 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 

Direct 

signal 

Normalized 

signal 
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