
Minufiya J. of Electronic Engineering Research (MJEER), Vol. 26, No. 1, January 2017. 
 

____________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

1 

MMooddiiffiieedd  RReeccoovveerryy  AAllggoorriitthhmmss  UUssiinngg  pprrooppoosseedd  

aallggoorriitthhmm  ffoorr  CCoommpprreessssiivvee  SSaammpplliinngg    

Wafaa A. Shalaby, Waleed Saad, Mona Shokair and Moawad I. Dessouky 
 

Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt 
 

(Received: 31-March-2016 – Accepted: 20-May-2016) 

 

AAbbssttrraacctt  

Compressive sampling (CS) has been an effective research 
area which plays an efficient role in many applications such as 
cognitive radio, imaging, radar and many other applications. In 
CS only a small number of linear measurements are used for 
reconstruction of the signal. The significant condition for dealing 
with compressed sensing system is that the signal in the input 
must be sparse. Most signals in nature are sparse or can be 
transformed to sparse by using any transform domain. This 
paper modifies all the recovery algorithms by using the 
proposed complex to real transformation algorithm. Conversion 
from not sparse signal to sparse by using Fourier transform will 
produce complexity, where this complexity can be removed 
using complex to real transformation algorithm and then 
applying it on all recovery algorithms to enhance their 
performance. By using the proposed algorithm, the sparse 
signal will be recovered in minimum error and less time. Also, 
the signal to error ratio from the recovery process is increased. 

 

11..  IInnttrroodduuccttiioonn  

Compressive sampling (CS) has a new life and spreads rapidly from 2006 

until now. CS had been used in many applications such as Rader, Remote 

sensing, cognitive radio and other applications. CS uses smaller rate than 

the Nyquist sampling rate defined by the Nyquist theorem,where the 

signal must be sampled at least twice the maximum frequency of the 

signal and then compressed the product of the sampling. CS combines two 
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stages of sampling and compression of the signal in one stage called 

compressed sensing as shown in Fig.1. 
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Fig.1 a) Conventional system, b) Compressed sensing system 

* Some of parts of this paper has been taken from [13] 

 One of the main conditions for CS is the signal sparsity, where the signal 

must be represented as a sparse signal by using any transform domains 

such as DCT, DFT and DWT [1]. The important aim for  using CS is that 

the sparse signal is sampled and reconstructed by using less number of 

measurements (m)  that represent the signal of length (n) where (m<<n). 

These linear measurements are achieved by projecting into various spaces 

that called the measurement space with which these measurements are 

achieved by using random matrix such as (Gaussian or Bernoulli) that 

achieves certain properties such as the RIP and NSP [2] to obtain the 

correct recovery. The main problem in the compressed sensing system is 

to recover the sparse signal from a small number of measurements. 

Therefore, different optimization techniques are used to obtainthe optimal 

solution such as convex optimization or L1-norm methods [3] that 

depends on linear programming to recover the sparse signal with high 

guarantee but it takes a long time to approach the solution [4]. Greedy 

algorithms depend on iteration to reach to the optimal sparse solution in 

minimum time than convex optimization such as Orthogonal Matching 
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Pursuit OMP [5] which has less guarantee than L1-minimization but with 

faster time to reach to the solution. Compressive sampling Matching 

Pursuit COsaMP [6] was proposed to decrease the error in OMP to benear 

from the convex optimization with less time similar to OMP. Hard 

Thresholding algorithms such as Iterative Hard Thresholding IHT based 

on negative gradient descent with fixed step size and the Normalized 

Iterative Hard Thresholding NIHT that varies the step size to enhance the 

convergence speed [7]. Hard Thresholding Pursuit HTP is the mixed 

algorithm that combines between two algorithms Iterative Hard 

Thresholding and Compressive Sampling Matching Pursuit in [8]. 

In this paper, input complex sinusoids are used for compressive sampling 

system where removing the complexity that produced during converting 

the signal to sparse by using the proposed algorithm called complex to real 

transformation algorithm. The proposed algorithm will expand the 

measurement matrix from (m*n) to (m*2n). This can be obtained by 

putting the real part in the first columns from 1: n and then assigning the 

imaginary parts with a negative sign in the next columns from n+1: 2n. 

Moreover, expanding the complex sparse signal to be (2n*1) instead of 

(n*1) by using the real parts in the first rows and then imaginary parts in 

the next rows. The real sensing matrix and sparse signal that achieved by 

using this transformation will contribute to introducing an improvement in 

reducing error and reaching to the optimum solution in faster time by 

using the minimum number of iterations. Moreover, the performance of 

the different optimization algorithms will be enhanced as will show in the 

simulation analysis. 

This paper is organized as follows: Section 2 illustrates the basic concepts 

of compressed sensing. The basic model of the proposed algorithm will be 

investigated in Section 3. The mathematical analysis of the proposed 

algorithm for compressive sensing will be described in Section 4.The 

modified recovery algorithms by using the proposed algorithm will be 

introduced in section 5. Simulation results will be discussed in Section 6. 

Finally, conclusions will be done in Section 7 

 

22..  TThhee  BBaassiicc  CCoonncceeppttss  ooff  CCoommpprreesssseedd  SSeennssiinngg  

The aim of CS is to identify the location and the values of a sparse signal 

from a minimum number of measurements. CS system can be described as 
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an underdetermined linear system for (m<<n) which can be represented by 

[9]. 

y=Ax                                                                                          (1) 

CS contains the following parts: 

 Representation of the signal (x) in sparse domain. 

 Selecting the measurement matrix (A). 

 Formation the measurement vector (y). 

A. Representation of the signal (x) in sparse domain: 

The sparse signal has a small number of larger elements and other 

elements are equal to zero and can be defined by using the zero 

norm
0

x as in the following Equation for input signal vector x = ix for 

i={1,2,….,N} [10].  

0
x = : 0

i
i x                                                                             (2) 

Furthermore, a signal is called compressible signal if it includes a small 

number of non-zero elements and many elements that are small closed to 

zero. Therefore, the signal that is not completely sparse or compressible 

signal can be transformed to sparse(s) by using any transform domain  . 

Where x is identified as a function of   as follows: 

x s                                                                 (3) 

B. The Measurement Matrix 

The measurement matrix (A) of length (m*n) can be called dictionary 

matrix where each column in it is called anatom. The measurement matrix 

is divided into three types by the following [11], 

1) Random matrices (Bernoulli orGaussian). 

2) Orthogonal transform matrices binary or not binary such as (partial 

Noiselet matrix or scrambled Fourier matrix). 

3) Sparse matrices. 

The measurement matrix must be contained the following conditions to 

obtain the optimal solution:                                                                                     
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 Small mutual coherence between the  basis   and the measurement 

matrix A in which the correlations between two basis are described by 

[12], 

1 ,1

( , ) . ,max
i m j n

A n A
i j

  
   

                                   (4) 

 Where, 
( , ) [1, ]A n  

 

 The condition for  restricted isometry property (RIP) is described as 

follow [9], 

2 2 2

2 2 2
(1 ) (1 )

k k
s As s                                             (5) 

The condition for achieving the RIP of order k is that
k

 must be not too 

closed to one. Actually, achieving this property is very hard. Therefore, 

choosing random matrices that achieve this properties such as (Bernoulli 

or Gaussian) matrices.  

C. The measurement vector (y) 

In compressed sensing system the number of measurements (m) must be 

smaller than the length of the signal (n). Selecting the number of 

measurements is dependent on the mutual coherencebetween the two 

basis, the measurement vector and the sparsity basis ( , )A  as in the 

following equation[12], 

2
. ( , ). . log( )m c A k n                                                                       (6) 

For the smallest the coherence, few number of samples are required. 

If ( , )A  is equal or close to one,the number of samples will be equal 

to . log( )k n samples. 

The measurement vector related with the sparse signal (s) is given by, 

y=Ax=A  s                                                                               (7)  

Where, 1 2
[ , , ....., ]

T

m

n
y y y y R  , mxn

A R , 1 2
[ , , ....., ]

n

nxn
R     , and 

1
i i

n

i

x s 


  . 
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33..  TThhee  BBaassiicc  MMooddeell  ooff  tthhee  PPrrooppoosseedd  AAllggoorriitthhmm  

The block diagram of a conventional compressed sensing system will be 

shown in Fig.2 with adding the block of complex to real before the 

recovery process in order to remove the imaginary parts in the sensing 

matrix and in the sparse signal to become real and remove complexity. 

 

Fig.2: Proposed Compressed Sensing Model [13]  

It consists of two parts: sampling process and reconstruction process. 

A. Sampling Process 

The input of sinusoid signal (x)of length n is converted to the frequency 

domain to be sparse by using Fourier transform (F) to form a sparse signal 

( fx ) where 

fx = F x                                                                                 (8) 

 x= 1
F



fx                                                                             (9) 

The measurement vector (y) are formed by using linear random 

combination of the signal x as follows: 

y=Ax=A
1

F


fx =
cs

A fx (10) 

The new block that introduced to remove the complexity in both cs
A ,  

fx to achieve the real matrix 
cs

realA and real vector frealx by using the 

transformation that described in the next section. The measurement vector 

will become, 

y =
cs

realA frealx                               (11) 
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B. Reconstruction Process 

By using the measurement y and the real sensing matrix
cs

realA  and any 

optimization algorithm to obtain a sparse solution ˆ
fx and then using 

inverse Fourier transform to inverse the sparsity and output the original 

signal x̂ . 

 

44..  MMaatthheemmaattiiccaall  AAnnaallyyssiiss  ooff  tthhee  PPrrooppoosseedd  

AAllggoorriitthhmm  ffoorr  CCoommpprreessssiivvee  SSeennssiinngg  

Proving that transformation from complex to real will give the same 

measurement vector y can be shown in [13]. The parameters that used will 

be defined in Table1. 

Table1: Parameters Description [13] 

cs
A  

The dictionary matrix is multiplication of the sensing matrix A 

and  transform matrix 1
F

  
1

F
  Inverse Fourier transform 

fx  Sparse signal after Fourier transformation 

mn  The real part of the matrix cs
A of the rowmandthe columnn 

mn  The imaginary part of the matrix cs
A of the rowmandthe columnn 

nR  The real part of the sparse signal fx at the row n 

nI  The imaginary part of the sparse signal fx at the row n 

cs

realA  The dictionary matrix cs
A after the complex to real transformation 

frealx  The sparse signal fx after the complex to real transformation 

The recovery process dependson both of cs
A and fx . Therefore, 

converting the complexity of both CS measurement matrix and the sparse 

signal from complex to real will improve recovery output. Assume the 

complex matrix cs
A of dimension (m*n), the sparse signal fx of 

length(n*1)and themeasurement y of length (m*1) which is defined by, 
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cs
A = A* 1

F
 =

11 11 1 1

1 1 1

n n

m m mn m

j j

j j

   

   

 

 

 
 
 
 
 

                      (12) 

 

 1 1 .........
T

f nn
x R jI R jI                                           (13) 

Converting the complex matrix cs
A of length(m*n) to the real 

matrix
cs

realA of dimension (m*2n). Then converting the complex sparse 

signalafter Fourier transform fx of length (n*1) to thereal sparse 

signal frealx of length (2n*1), by using the following equations: 

cs

realA =

11 1 11 1

1 1

..... .....

..... .....

n n

m mn m mn

   

   

 

 

 
 
 
 
 

                                   (14) 

 1 1

T

freal n nx R R I I                                                     (15)  

  y= *
cs

f
A x =

cs

realA * frealx =    

11 1 1 11 11

1 1 1 1

n n n n

m mn n m mn n

R R I I

R R I I

   

   

    

    

 
 
 
 
 

         (16) 

Equation (16) proves thatthe transformation is mathematically correct and 

output the same measurement vector y. This transformation from complex 

to real beefficient, which providea higher reduction in error becauseof 

dealing with the real matrix is very easyto use and saving the time as will 

be shown in the simulation analysis. 

 

55..  MMooddiiffiieedd  RReeccoovveerryy  AAllggoorriitthhmmss  bbyy  UUssiinngg  tthhee  

PPrrooppoosseedd  AAllggoorriitthhmm  

The main part of CS system is recovery of the sparse signal(s) from a few 

measurements (y) by using different optimization techniques. Different 

types of algorithms typically used for sparse recovery can be summarized 

asshown in Fig.3. 
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9 

 

Fig.3: Different Recovery Algorithms 

A. Convex Optimization or Basis Pursuit (BP): called L1-norm which 

is defined by, 

min
x

1
x  s.t   y=

cs

realA x                                                  (17) 

It seeks to find the value of x̂ that intersects withy=
cs

realA xto produce 

minimizes
1

ˆx x . It has advantages that provides strong guarantees and 

stability for recovery the sparse signal from compressible signals and 

alsonoisy signals but, it needs long time to reach to the optimal solution. It 

used linear programming for solution as described in [4] but only with 

replacing the complex sensing matrix with real one that defined in the 

proposed algorithm to improve the performance of the recovery process as 

will discuss in the simulation.  

B. Greedy Algorithms: such as COSAMP, which is quite fast in time that 

is required to obtain the optimal solution but has small guarantees than BP 

provides. It depends on selecting 2s atom per each iteration in which this 

algorithm expands the support set by 2s largest elements in each iteration. 

COSAMP can be reconstructed the original signal as in [6]: At the 

beginning, assume that initial solution 0
x =0 and residual(r) = y.Iteration 

starts atk = 0. Support (T) = . In each step, 2s atoms of A is correlated 

with the residual of measurements (y-Ax) and its index is then addedto the 

support. Then, solve the least square minimization through the current 

support estimated. Then update the residual r, until reaching to 1
ˆ ˆ

k k
x x


 . 
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Then the output becomes ˆ
k

x . The modified COSAMP algorithm after 

applying the proposed technique by replacing each complex sensing 

matrix with real matrix can be summarized as follows: 

The proposed COSAMP algorithm 

Input: y, 
cs

realA  , s 

Initialize: k=0,
0 0

0, , Tx r y     

Steps: 

For   k=1, 2,…… 
1 1

2supp(H ( )k k T k

s realT T A r    

2

2
argmin

x kT

k kT T T

k
x y A x   

k cs k

realr y A x   

End if (
2

kr EPS ) 

Output:  x= kx  
 

C. Hard Thresholding Algorithms: 

IHT is an example on hard thresholding algorithms which it is a simple 

algorithm that depends on negative gradient   descend method [7]. It is an 

iterative algorithm which the sparse signal can be recovered with more 

accuracy and in minimum run time than BP.The modified IHT algorithm 

can be summarized by,  

The proposed IHT algorithm 

Input: y,
cs

realA  , s  

Initialize:K=0,
0 0

0,x r y   

Steps: 

For   k=1, 2,…… 
1 1( (y ))k k T cs k

s real realx H x A A x     

k cs k

realr y A x   

End for if (
2

kr EPS ) 

Output:  x= kx  
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sH is a hard thresholding operator that puts all the indicies below s to 

zero, is the step size parameter that varies linearly to reach a linear rate 

of convergence and avoids instability in the algorithm 

D. Hard Thresholding Pursuit HTP: 

HTP algorithm combines between the two previous algorithms IHT and 

COSAMP which introduces a minimization in the time for reaching the 

optimal solution and also exceedssignal to error ratio [8]. HTP algorithm 

uses negative gradient descent for estimating the support T such as IHT 

algorithm and then solving the least square minimization through the 

current support estimated T.  The modified HTP algorithm after applying 

the proposed algorithm can be summarized as follows: 

The proposed HTP algorithm 

Input: y,
cs

realA  , s 

Initialize:k=0,
0 0

0,x r y  , T    

Steps: 

For   k=1, 2,…… 
1 1( (y ))k k T k

realx x A Ax     

T = support for the s largest indices in ( kx )  

 
2

arg min ,supp(x) Tk cs

realx y A x    

k cs k

realr y A x   

End for if (
2

kr EPS ) 

Output:  x= kx  

 

66..  SSiimmuullaattiioonn  AAnnaallyyssiiss  

By using Monte Carlo simulation for repetition 500 times randomly to test 

the performance of modified recovery algorithms and compare it with 

conventional ones. Simulations are divided into two parts as follows. 
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A. Simulation Parameters  

Using sinusoidal signal of dimensions (n, 1) where n=1024, the input 

signal is variability in the time domain in the range of t= 0: n-1 which is 

described by [14], 

x=0.6sin2  (29/n) t-1.5sin2  (100/n) t +sin2  (200/n) t +0.8sin2 

 (400/n) t +2sin2  (500/n) t -sin2  (600/n) t                           (18) 

 Converting this signal to sparse signal fx in the frequency domain by 

using fast Fourier transform with sparsity level k=6. Choosing the 

measurement matrix A orthogonal and Gaussian random matrix. 

Normalized measures for the measurement length to the signal length 

are defined by R =m/n which R varies in the range of [0.1:0.9] where 

the measurements length m= round(R*n).UsingL1-NORM, COSAMP, 

HTP and IHT as an optimization technique that is used for achieving 

the optimal solution [9].The performance of the proposed algorithms 

will be tested by using the following matrices: 

Average Normalized Mean Square Error:  

ANMSE =
5001 2 2

2 2
1500

ˆ /x x x  
 

, 

Average Normalized Signal to Error ratio (ANSER) in dB:  

ANSER =  
500

10
1500

1
10 /Log ps pe  =

5001

10
1500

* ' * '
10 log /

y y res res

m m

 
  

  

Where, the res = y -
cs

realA ˆ
fx and iteration time in the range of change of R. 

B. Simulation Results and Discussion 

The simulation results are divided into four parts, all parts provide a 

comparison between the conventional algorithms and the proposed ones 

with respect to different evaluation matrices as described in the figures. 

Fig.4 shows the variation of the compression ratio m/n that represents the 

measurement vector length m normalized to the signal length n with 

respect to the average run time. This measurement length must be less 

than the signal length as possible for minimum error in the compressed 

sensing system. Increasing the compression ratio (m/n) will produce 

increasing atan iteration time because of using a number of measurements 

must be needed more processing time.  
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Fig 4: Comparison between the proposed algorithms and the conventional ones 

with respect to the average run time. 
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This figure will compare between all of L1-NORM, COSAMP, IHT and 

HTP algorithms with the proposed ones.Taking any point of compression 

ratio in Fig.4 (a) at (m/n) =0.8, The run time of conventional L1-NORM 

will be reduced by using the proposed algorithm from 22 to 7. The 

proposed algorithm decreases the run time because of the complexity due 

to dealing with the imaginary parts will take a larger time than using real 

parts even if we doubled the size of the matrix it will take less time than 

using imaginary parts. Another reason for reducing the runtime with using 

the proposed algorithm is that we need the sensing matrix as input for the 

recovery algorithm, therefore using the real matrix is faster in dealing and 

saving the time than dealing with the imaginary matrix. Fig.4 (b) provide a 

comparison between conventional COSAMP and the proposed one. At 

any point of m/n=0. 9, improvement will appear in the proposed algorithm 

by 5 times than conventional algorithm. Using an IHT algorithm in Fig.4 

(c) which the proposed algorithm also provides enhancement at the run 

time by percentage 50%. In the end, using proposed HTP in Fig.4 (c) 

reduces the run time also than conventional algorithm. 

Figure 5 will illustrate the performance of the four proposed algorithms 

and compared it with the conventional algorithms with respect to the 

average mean square error. The mean square error decreases with 

increasing the compression ratio because of increasing measurements 

mean that more samples represent the signal. Whenever the measurements 

near to the signal length, the error is decreasing. Fig.5 (a) provides a 

comparison between the proposed and the conventional L1-NORM where 

the error due to using the proposed algorithm appears as fixed line but it 

decreases gradually in the range of 7
10

 . The proposed algorithm recovers 

the sparse signal with minimum error than the conventional one because 

the proposed algorithm removes the complexity and dealing with the real 

matrix which contribute to minimize the error than dealing with complex 

matrix. Fig.5 (b) shows a comparison between the performance of 

COSAMP and the proposed algorithm where the proposed algorithm 

provides enhancement in the error reduction by percentage 50%. Fig.5 (c) 

clarifies that the proposed algorithm decreases the error than the 

conventional IHT which provide enhancements in the compressed sensing 

system. Fig.5 (d) represents the clear improvement in the error due to 

using the modified HTP than the conventional one where the error is close 

to zero.  
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Fig 5: Comparison between the proposed algorithms and the conventional ones 

with respect to the average mean square 
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Fig.6 studies the variations between the compression ratio (m/n) and the 

average signal to error ratio. It illustrates the response of applying the 

complex to real transformation of different algorithms which 

providesimprovement in signal to error ratio in all cases. As the number of 

measurements increase to near to Nyquist rate, the recovery enhanced 

which the signal to error ratio increases. Fig.6 (a)describes that the signal 

to error ratio will be increased with increasing the compression ratio, but 

when using the proposed algorithm, the signal to error ratio increases than 

using the conventional L1-NORM. Fig.6 (b) shows that by using 

COSAMP algorithm the signal to ratio also increases with increasing the 

ratio (m/n) but it is noticeable that the signal to error ratio improves when 

applying the proposed technique by pecentage50% approximately. 

Fig.6(c) compares between the conventional IHT and the proposed one 

where the signal to error ratio improves by using the proposed 

algorithm.Fig.6 (d) the signal to error ratio appears as fixed line but the 

modified HTP changes increasing in the range of 260 dB and the 

conventional HTP changed in the range of 20 dB where the proposed 

provide higher improvement than conventional algorithm 
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Fig 6. Comparison between the proposed algorithms and the conventional ones 

with respect to the average Signal to Error ratio.  

 

77..  CCoonncclluussiioonnss  

The important process in compressed sensing is the recovery process that 

recover the sparse signal from the minimum number of measurements by 

using different optimization algorithms in minimum time and minimum 

error and high signal to error ratio. This paper introduced modification in 

all recovery algorithms that provide improvements for the performance of 

recovery algorithms when compared to the conventional ones. 

Compressed sensing system performance improved by using the proposed 

algorithm. Converting the signal that is not completely sparse in the time 

domain to sparse in the frequency domain by using Fourier transform to 
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be allowed to use in the compressed sensing system will produce 

complexity in both the measurement matrix and the sparse signal. 

Removing the complexity by using the complex to a real transformation 

algorithm which introduces enhancement in the performances of recovery 

algorithms inthe compressed sensing system.  
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 ملخص البحث باللغة العربية

 
داء الانظمه  المسهدمد    هس اجهد الاش الا هلاصل الا ه ي  لأهذا البحث يقدم تحسين 

بلاجدمدام نظهلام اديهد ل دحليهل الدمي هى الهى  قيقهى  هس نظهلام الاجداهطلاص ال هلا   

وتطدبهه  لم يههط اهها  الا ههلاصاو  ههن الملاههلللاو ال لا ههط  ههس   ههلا   طلال ههط .

لقصلي  س الكثي   نلالدطبيقلاو الحيليط  ثل تمزين لدد الا لاصاو وذلك لاهميد لا ا

أكب   هن المط ل هلاو بج  هلام  هاي ن ولنهد اجهد الاش ههذل الا هلاصاو  ه ن أ ه ي 

ل ؤيد لا يلاد الكثي   هن المطلاهلاو والاه ولا الا  هط لهذلك ودلا  قهدو المط ل هلاو 

ولا نسههدطيا الحصههل  ل ي ههلا أو تدقههد الدت ههلا و ههن اههمن هههذل الاهه ولا لا بههد أ  

كميههط كبيهه ن  ههن الأ ههدلاص دوذلههك لنههد كههل  الا ههلاصن  ههس الاجههلاع تحدههلي ل ههس ت

تحلي  لا الس النظلام ال امس( وهل  هلا يط هع ل يه  الا هلاصن السهبلاصع ولحسهن الحه  

يلاد الكثي   ن الا لاصاو جبلاصع بطبيطد هلا و لكهن يلاهد بطهر ا ه  يحدهلا  الهس 

لم يلاو  لصي  لدحلي  لا الس ا لاصل جبلاصع وذلك ل ملا  للدت لا  ه ن ا ه ي بطهد 

لنللي   ن الا لاصاو بطد اا اء لم يلاو الدحليل تصبح  طقدن و س هذل ا .ااط لا

 ملا يؤدي الس تطقيد نظلام  ك ال ا  و يلادن وات اجد الاش الا لاصن لذلك  هى ههذا 

تم تقديم نظلام  طد  ل دحليل بدو  تطقيداو  ملا أدي الس  يلادل كدلاءل النظهلام  بحثال

نه  أداء النظهلام ال ديهد و ج ل  لم ي  اجد الاش الا لاصن بجال نسبط  طهج و تهم  قلاص

المقد ح بلالانظمه  الملاهلدل  ط يهلا واهد أتبهت تدلاه  ل هي م  هس لهدل للا هل اهم هلا 

جهه ل  اجههد الاش الا ههلاصل و دصاهه  تطقيههد النظههلام واههلدن الا ههلاصل كمههلا أنهه  يمكههن 

 .دجدمدام هذل الدقني  المقد  ط لدطديل أي  ن الانظمط المدلا ط  لاليلا لدحسن أداءهلا


