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Abstract

Compressive sampling (CS) has been an effective research
area which plays an efficient role in many applications such as
cognitive radio, imaging, radar and many other applications. In
CS only a small number of linear measurements are used for
reconstruction of the signal. The significant condition for dealing
with compressed sensing system is that the signal in the input
must be sparse. Most signals in nature are sparse or can be
transformed to sparse by using any transform domain. This
paper modifies all the recovery algorithms by using the
proposed complex to real transformation algorithm. Conversion
from not sparse signal to sparse by using Fourier transform will
produce complexity, where this complexity can be removed
using complex to real transformation algorithm and then
applying it on all recovery algorithms to enhance their
performance. By using the proposed algorithm, the sparse
signal will be recovered in minimum error and less time. Also,
the signal to error ratio from the recovery process is increased.

1. Introduction

Compressive sampling (CS) has a new life and spreads rapidly from 2006
until now. CS had been used in many applications such as Rader, Remote
sensing, cognitive radio and other applications. CS uses smaller rate than
the Nyquist sampling rate defined by the Nyquist theorem,where the
signal must be sampled at least twice the maximum frequency of the
signal and then compressed the product of the sampling. CS combines two
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stages of sampling and compression of the signal in one stage called
compressed sensing as shown in Fig.1.

Input signal N - Samples K transmit
> Sampling —————+> Compression |(———r
X K< <N store
output signal K /
<+——— Decompression <+———| Recieving data
X
(@)
Input signal(N) Measurement(M) transmit
—0 Compressive Sampling — &
X M<<N store
output signal(N) M /
<—— | Reconstruction <————— Recieving data
X
(b)

Fig.1 a) Conventional system, b) Compressed sensing system

* Some of parts of this paper has been taken from [13]

One of the main conditions for CS is the signal sparsity, where the signal
must be represented as a sparse signal by using any transform domains
such as DCT, DFT and DWT [1]. The important aim for using CS is that
the sparse signal is sampled and reconstructed by using less number of
measurements (m) that represent the signal of length (n) where (m<<n).
These linear measurements are achieved by projecting into various spaces
that called the measurement space with which these measurements are
achieved by using random matrix such as (Gaussian or Bernoulli) that
achieves certain properties such as the RIP and NSP [2] to obtain the
correct recovery. The main problem in the compressed sensing system is
to recover the sparse signal from a small number of measurements.
Therefore, different optimization techniques are used to obtainthe optimal
solution such as convex optimization or L1-norm methods [3] that
depends on linear programming to recover the sparse signal with high
guarantee but it takes a long time to approach the solution [4]. Greedy
algorithms depend on iteration to reach to the optimal sparse solution in
minimum time than convex optimization such as Orthogonal Matching
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Pursuit OMP [5] which has less guarantee than L1-minimization but with
faster time to reach to the solution. Compressive sampling Matching
Pursuit COsaMP [6] was proposed to decrease the error in OMP to benear
from the convex optimization with less time similar to OMP. Hard
Thresholding algorithms such as Iterative Hard Thresholding IHT based
on negative gradient descent with fixed step size and the Normalized
Iterative Hard Thresholding NIHT that varies the step size to enhance the
convergence speed [7]. Hard Thresholding Pursuit HTP is the mixed
algorithm that combines between two algorithms Iterative Hard
Thresholding and Compressive Sampling Matching Pursuit in [8].

In this paper, input complex sinusoids are used for compressive sampling
system where removing the complexity that produced during converting
the signal to sparse by using the proposed algorithm called complex to real
transformation algorithm. The proposed algorithm will expand the
measurement matrix from (m*n) to (m*2n). This can be obtained by
putting the real part in the first columns from 1: n and then assigning the
imaginary parts with a negative sign in the next columns from n+1: 2n.
Moreover, expanding the complex sparse signal to be (2n*1) instead of
(n*1) by using the real parts in the first rows and then imaginary parts in
the next rows. The real sensing matrix and sparse signal that achieved by
using this transformation will contribute to introducing an improvement in
reducing error and reaching to the optimum solution in faster time by
using the minimum number of iterations. Moreover, the performance of
the different optimization algorithms will be enhanced as will show in the
simulation analysis.

This paper is organized as follows: Section 2 illustrates the basic concepts
of compressed sensing. The basic model of the proposed algorithm will be
investigated in Section 3. The mathematical analysis of the proposed
algorithm for compressive sensing will be described in Section 4.The
modified recovery algorithms by using the proposed algorithm will be
introduced in section 5. Simulation results will be discussed in Section 6.
Finally, conclusions will be done in Section 7

2. The Basic Concepts of Compressed Sensing

The aim of CS is to identify the location and the values of a sparse signal
from a minimum number of measurements. CS system can be described as
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an underdetermined linear system for (m<<n) which can be represented by
[9].
y=AX (1)
CS contains the following parts:
e Representation of the signal (x) in sparse domain.
e Selecting the measurement matrix (A).

e Formation the measurement vector (y).

A. Representation of the signal (x) in sparse domain:

The sparse signal has a small number of larger elements and other
elements are equal to zero and can be defined by using the zero

norme HO as in the following Equation for input signal vector x =x; for
i={1,2,...,N} [10].

[, ={i :x; =0} ©)

Furthermore, a signal is called compressible signal if it includes a small
number of non-zero elements and many elements that are small closed to
zero. Therefore, the signal that is not completely sparse or compressible
signal can be transformed to sparse(s) by using any transform domain 3 .

Where x is identified as a function of g as follows:
X = fs 3)

B. The Measurement Matrix

The measurement matrix (A) of length (m*n) can be called dictionary
matrix where each column in it is called anatom. The measurement matrix
is divided into three types by the following [11],

1) Random matrices (Bernoulli orGaussian).

2) Orthogonal transform matrices binary or not binary such as (partial
Noiselet matrix or scrambled Fourier matrix).

3) Sparse matrices.

The measurement matrix must be contained the following conditions to
obtain the optimal solution:
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e Small mutual coherence between the basis g and the measurement

matrix A in which the correlations between two basis are described by
[12],

u(A, B)=n.  max

1<i<m 1<j<n

AL (@)

Where, #(A) €[t 4]

e The condition for restricted isometry property (RIP) is described as
follow [9],

-5l <las, < ax o)l ()

The condition for achieving the RIP of order Kk is that s, must be not too

closed to one. Actually, achieving this property is very hard. Therefore,
choosing random matrices that achieve this properties such as (Bernoulli
or Gaussian) matrices.

C. The measurement vector (y)

In compressed sensing system the number of measurements (m) must be
smaller than the length of the signal (n). Selecting the number of
measurements is dependent on the mutual coherencebetween the two
basis, the measurement vector and the sparsity basis u(A,B)as in the

following equation[12],
m>c.4’(A, B)k.log(n) (6)

For the smallest the coherence, few number of samples are required.
If u(A, p)is equal or close to one,the number of samples will be equal

tok .log(n) samples.

The measurement vector related with the sparse signal (s) is given by,
y=AXx=A 3 s (7)

T

Where, y =[y,,¥,iY,] €R", AcR™, B=[B,5, . B,]1eR™, and
x:isiﬂi.
i=1
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3. The Basic Model of the Proposed Algorithm

The block diagram of a conventional compressed sensing system will be
shown in Fig.2 with adding the block of complex to real before the
recovery process in order to remove the imaginary parts in the sensing
matrix and in the sparse signal to become real and remove complexity.

) ol | At Complex e vect
; sparse signa measurement vector
NPt SIENA 1 E opir Transform | P28 [ faasurement Matrix to ) =
X F xf A Real ) y=Areal*xfreal
Transformation
d sianal g anal CS recovery y
re covered signa . recovered sparse signa :
g Inverse Fourir P 9 algorithms
- '_'— = .
X" Transform xf* by using
Areal.y

Fig.2: Proposed Compressed Sensing Model [13]
It consists of two parts: sampling process and reconstruction process.

A. Sampling Process

The input of sinusoid signal (x)of length n is converted to the frequency
domain to be sparse by using Fourier transform (F) to form a sparse signal

(x; ) where
Xi =Fx (8)
Xx=F* X; (9)

The measurement vector (y) are formed by using linear random
combination of the signal x as follows:

y=Ax=AF 7 X; = A% X; (10)

The new block that introduced to remove the complexity in both A,

X; to achieve the real matrix An,and real vectorXy,by using the

transformation that described in the next section. The measurement vector
will become,

y= A:;al X freal (11)
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B. Reconstruction Process

By using the measurement y and the real sensing matrixA., and any

optimization algorithm to obtain a sparse solutionX; and then using

inverse Fourier transform to inverse the sparsity and output the original
signal X .

4. Mathematical Analysis of the Proposed
Algorithm for Compressive Sensing

Proving that transformation from complex to real will give the same
measurement vector y can be shown in [13]. The parameters that used will
be defined in Tablel.

Tablel: Parameters Description [13]
The dictionary matrix is multiplication of the sensing matrix A

and transform matrix F *
E1 | Inverse Fourier transform

X; Sparse signal after Fourier transformation

Yan | The real part of the matrix A of the rowmandthe columnn

O, | The imaginary part of the matrix A of the rowmandthe columnn

R, The real part of the sparse signal X at the row n

I, The imaginary part of the sparse signal X at the row n

ACS

real

The dictionary matrix A after the complex to real transformation

Xiea | The sparse signal X; after the complex to real transformation

The recovery process dependson both of A andX;. Therefore,

converting the complexity of both CS measurement matrix and the sparse
signal from complex to real will improve recovery output. Assume the

complex matrix A of dimension (m*n), the sparse signalX; of
length(n*1)and themeasurement y of length (m*1) which is defined by,
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i ti6y . w16,

AT=AREEl 0 (12
Wi+t 1001 0 W +160

xp =(Rytily oo R, +il,) (13)

Converting the complex matrix A® of length(m*n) to the real
matrifoesaj of dimension (m*2n). Then converting the complex sparse

signalafter Fourier transformX; of length (n*1) to thereal sparse

signal X4y of length (2n*1), by using the following equations:

Yin o e Yin O e -0,

P 1)
Wit e Yon  —On1 e -0

Xpew =(Ry =+ Ry 1y = 1) (15)

cs cs .
y=A *Xf :Areal*xfreaI: : (16)

YRy ++ ¥R, —9m1|l—-~~—9 I

mn' g

Equation (16) proves thatthe transformation is mathematically correct and
output the same measurement vector y. This transformation from complex
to real beefficient, which providea higher reduction in error becauseof
dealing with the real matrix is very easyto use and saving the time as will
be shown in the simulation analysis.

5. Modified Recovery Algorithms by Using the
Proposed Algorithm

The main part of CS system is recovery of the sparse signal(s) from a few
measurements (y) by using different optimization techniques. Different
types of algorithms typically used for sparse recovery can be summarized
asshown in Fig.3.
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. L . . Hard thresholding Hazd thresholding
Convex optimization Greedy algorithms e .
algorithms pursuit
Orthegonal Cosmprlies_s :‘e Tterative NIO:'”:‘;J'.L?E d
l\I:u'Chlﬂg Samplmg ]_L_'rcl erative

Hard
Thresholding

Matc hing

Pursuit Pursuit

Thresholding

Fig.3: Different Recovery Algorithms

A. Convex Optimization or Basis Pursuit (BP): called L1-norm which
is defined by,

Cs

min [}, st y=Agx (17)

It seeks to find the value of X that intersects withy=A~, xto produce

minimizest -X Hl It has advantages that provides strong guarantees and

stability for recovery the sparse signal from compressible signals and
alsonoisy signals but, it needs long time to reach to the optimal solution. It
used linear programming for solution as described in [4] but only with
replacing the complex sensing matrix with real one that defined in the
proposed algorithm to improve the performance of the recovery process as
will discuss in the simulation.

B. Greedy Algorithms: such as COSAMP, which is quite fast in time that
is required to obtain the optimal solution but has small guarantees than BP
provides. It depends on selecting 2s atom per each iteration in which this
algorithm expands the support set by 2s largest elements in each iteration.
COSAMP can be reconstructed the original signal as in [6]: At the
beginning, assume that initial solutionx°=0 and residual(r) = y.lteration
starts atk = 0. Support (T) =< . In each step, 2s atoms of A is correlated
with the residual of measurements (y-Ax) and its index is then addedto the
support. Then, solve the least square minimization through the current

support estimated. Then update the residual r, until reaching to x*** = x* .
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Then the output becomesx®. The

modified COSAMP algorithm after

applying the proposed technique by replacing each complex sensing
matrix with real matrix can be summarized as follows:

The proposed COSAMP algorithm

Input:y, Ao, s

Steps:
For k=1, 2,......

k
X1 =argmin Hy
>(_|_k

=y -A% x"

Output: x=x*

Initialize: k=0, x °

T* =T Usupp(H,s (A 1)

End if(HrkH2 <EPS)

2
_ALX H
RS |8

C. Hard Thresholding Algorithms:

IHT is an example on hard thresholding algorithms which it is a simple
algorithm that depends on negative gradient descend method [7]. It is an
iterative algorithm which the sparse signal can be recovered with more

accuracy and in minimum run time
can be summarized by,

than BP.The modified IHT algorithm

The proposed IHT algorithm

Input: y,Any s

Steps:

r“=y -AS X

Output: x=x*

Initialize:K=0,X0 =0,r’= y

For k=1, 2,.....
k k-1 T
X =H (X" +uA,,
k

End for if (|r*|,

y-Amx ‘)

<EPS)

10
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H.is a hard thresholding operator that puts all the indicies below s to

zero, # is the step size parameter that varies linearly to reach a linear rate
of convergence and avoids instability in the algorithm

D. Hard Thresholding Pursuit HTP:

HTP algorithm combines between the two previous algorithms IHT and
COSAMP which introduces a minimization in the time for reaching the
optimal solution and also exceedssignal to error ratio [8]. HTP algorithm
uses negative gradient descent for estimating the support T such as IHT
algorithm and then solving the least square minimization through the
current support estimated T. The modified HTP algorithm after applying
the proposed algorithm can be summarized as follows:

The proposed HTP algorithm

Input: y,A>, s

Initialize:k:O,X0 =0,r0 =y, T=0

Steps:

For k=1, 2,......

Xt =(x" 7+ AL (y-AX )

T = support for the s largest indices in (x*)

x* =arg min{”y —Ap, X Hz ,SUpP(X) QT}
rk =Yy _Arcesalxk
end orif || <95 )

Output: x=x*

6. Simulation Analysis

By using Monte Carlo simulation for repetition 500 times randomly to test
the performance of modified recovery algorithms and compare it with
conventional ones. Simulations are divided into two parts as follows.

11
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A. Simulation Parameters

Using sinusoidal signal of dimensions (n, 1) where n=1024, the input
signal is variability in the time domain in the range of t= 0: n-1 which is
described by [14],

x=0.6sin2 7(29/n) t-1.5sin2 z(100/n) t +sin2 z(200/n) t +0.8sin2
7(400/n) t +2sin2 z(500/n) t -sin2 ~(600/n) t (18)

e Converting this signal to sparse signal X; in the frequency domain by

using fast Fourier transform with sparsity level k=6. Choosing the
measurement matrix A orthogonal and Gaussian random matrix.
Normalized measures for the measurement length to the signal length
are defined by R =m/n which R varies in the range of [0.1:0.9] where
the measurements length m= round(R*n).UsingL1-NORM, COSAMP,
HTP and IHT as an optimization technique that is used for achieving
the optimal solution [9].The performance of the proposed algorithms
will be tested by using the following matrices:

Average Normalized Mean Square Error:
1 500

ANMSE = = 57| [l —x |12 7|x]I; |,

500 1

Average Normalized Signal to Error ratio (ANSER) in dB:

y*y ' ores *res }

1 500 1 500
ANSER =_~ 37 [10Lo0g,,ps / pe] :7§ 10logy, / m
500

500 1

Where, the res =y -A~, X; and iteration time in the range of change of R.

B. Simulation Results and Discussion

The simulation results are divided into four parts, all parts provide a
comparison between the conventional algorithms and the proposed ones
with respect to different evaluation matrices as described in the figures.
Fig.4 shows the variation of the compression ratio m/n that represents the
measurement vector length m normalized to the signal length n with
respect to the average run time. This measurement length must be less
than the signal length as possible for minimum error in the compressed
sensing system. Increasing the compression ratio (m/n) will produce
increasing atan iteration time because of using a number of measurements
must be needed more processing time.

12
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Fig 4: Comparison between the proposed algorithms and the conventional ones

with respect to the average run time.

13
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This figure will compare between all of L1-NORM, COSAMP, IHT and
HTP algorithms with the proposed ones.Taking any point of compression
ratio in Fig.4 (a) at (m/n) =0.8, The run time of conventional L1-NORM
will be reduced by using the proposed algorithm from 22 to 7. The
proposed algorithm decreases the run time because of the complexity due
to dealing with the imaginary parts will take a larger time than using real
parts even if we doubled the size of the matrix it will take less time than
using imaginary parts. Another reason for reducing the runtime with using
the proposed algorithm is that we need the sensing matrix as input for the
recovery algorithm, therefore using the real matrix is faster in dealing and
saving the time than dealing with the imaginary matrix. Fig.4 (b) provide a
comparison between conventional COSAMP and the proposed one. At
any point of m/n=0. 9, improvement will appear in the proposed algorithm
by 5 times than conventional algorithm. Using an IHT algorithm in Fig.4
(c) which the proposed algorithm also provides enhancement at the run
time by percentage 50%. In the end, using proposed HTP in Fig.4 (c)
reduces the run time also than conventional algorithm.

Figure 5 will illustrate the performance of the four proposed algorithms
and compared it with the conventional algorithms with respect to the
average mean square error. The mean square error decreases with
increasing the compression ratio because of increasing measurements
mean that more samples represent the signal. Whenever the measurements
near to the signal length, the error is decreasing. Fig.5 (a) provides a
comparison between the proposed and the conventional L1-NORM where
the error due to using the proposed algorithm appears as fixed line but it

decreases gradually in the range of 10" . The proposed algorithm recovers
the sparse signal with minimum error than the conventional one because
the proposed algorithm removes the complexity and dealing with the real
matrix which contribute to minimize the error than dealing with complex
matrix. Fig.5 (b) shows a comparison between the performance of
COSAMP and the proposed algorithm where the proposed algorithm
provides enhancement in the error reduction by percentage 50%. Fig.5 (c)
clarifies that the proposed algorithm decreases the error than the
conventional IHT which provide enhancements in the compressed sensing
system. Fig.5 (d) represents the clear improvement in the error due to
using the modified HTP than the conventional one where the error is close
to zero.

14
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Fig 5: Comparison between the proposed algorithms and the conventional ones
with respect to the average mean square
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Fig.6 studies the variations between the compression ratio (m/n) and the
average signal to error ratio. It illustrates the response of applying the
complex to real transformation of different algorithms which
providesimprovement in signal to error ratio in all cases. As the number of
measurements increase to near to Nyquist rate, the recovery enhanced
which the signal to error ratio increases. Fig.6 (a)describes that the signal
to error ratio will be increased with increasing the compression ratio, but
when using the proposed algorithm, the signal to error ratio increases than
using the conventional L1-NORM. Fig.6 (b) shows that by using
COSAMP algorithm the signal to ratio also increases with increasing the
ratio (m/n) but it is noticeable that the signal to error ratio improves when
applying the proposed technique by pecentage50% approximately.
Fig.6(c) compares between the conventional IHT and the proposed one
where the signal to error ratio improves by using the proposed
algorithm.Fig.6 (d) the signal to error ratio appears as fixed line but the
modified HTP changes increasing in the range of 260 dB and the
conventional HTP changed in the range of 20 dB where the proposed
provide higher improvement than conventional algorithm

Average Signal to Error Ratio
280 T T T T

== 1-NORM
2% == Proposed

Average SER

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
m/n

(@) L1-norm algorithm

Average Signal to Error Ratio
150 T T T T T T T

== cosamp
=P= proposed

100 -

50~ bl

AverageSER

50 r r r r r r r r r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m/n
(b) COSAMP algorithm

16



Minufiya J. of Electronic Engineering Research (MJEER), Vol. 26, No. 1, January 2017.

Average Signal to Error Ratio(dB)

U U U T 3 U 1§

== [HT
=>=proposed |

e
3

o
S
T

o
w
T
1

Average SER
7

o
H
T
1

r r r r r r r r
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m/n
(c) IHT algorithm

Average Signal to Error Ratio

30I T T T T B el HTP
P P P > > =P=Proposed P

o

o
o
—

Average SER
g
T

0.1 0.2 03 0.4 05 0.6 07 0.8 0.9
m/n

(d) HTP algorithm

Fig 6. Comparison between the proposed algorithms and the conventional ones
with respect to the average Signal to Error ratio.

7. Conclusions

The important process in compressed sensing is the recovery process that
recover the sparse signal from the minimum number of measurements by
using different optimization algorithms in minimum time and minimum
error and high signal to error ratio. This paper introduced modification in
all recovery algorithms that provide improvements for the performance of
recovery algorithms when compared to the conventional ones.
Compressed sensing system performance improved by using the proposed
algorithm. Converting the signal that is not completely sparse in the time
domain to sparse in the frequency domain by using Fourier transform to

17
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be allowed to use in the compressed sensing system will produce
complexity in both the measurement matrix and the sparse signal.
Removing the complexity by using the complex to a real transformation
algorithm which introduces enhancement in the performances of recovery
algorithms inthe compressed sensing system.
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