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AAbbssttrraacctt  

In this paper a computational technique is presented for the          
numerical solution of a certain potential-type singular Fredholm 
integral equation of the first kind with singular unknown density 
function, and a weakly singular logarithmic kernel. This equation is 
equivalent to the solution of the Dirichlet boundary value problem 
for Laplace equation for an open contour in the plane. The 
parameterization of the open contour facilitates the treatment of the 
density function’s singularity in the neighborhood of the end-points 
of the contour, and the kernel’s singularity. The unknown density 
function is replaced by a product of two functions; the first explicitly 
expresses the bad behavior of the density function, while the 
second is a regular unknown function, which will be interpolated 
using Newton interpolation in a matrix form. The singularity of the 
parameterized kernel is treated by expanding the two argument 
parametric functions into Taylor polynomial of the first degree about 
the singular parameter. Moreover, two asymptote formulas are 
used for the approximation of the kernel. In addition, an adaptive 
Gauss–Legendre formula, is applied for the computations of the 
obtained convergent integrals. Thus the required numerical solution 
is found to be equivalent to the solution of a system of algebraic 
equations. The numerical solution of the illustrated example is 
closer to the exact solution; which ensures the high accuracy of the 
presented computational technique.                             

 

Keywords: Electro-optics, electromagnetism, Fredholm integral 

equations, well-posed, singular, logarithmic kernel.              
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11..  IInnttrroodduuccttiioonn  

This paper is devoted to establish a computational technique for the 

numerical solution of a certain potential-type Fredholm integral equation 

of the first kind, whose unknown function (density) is singular in the 

neighborhood of the integration domain, and has a weakly singular kernel. 

In section 2, the reformulating of the Dirichlet problem for the Laplace 

equation of a mass distribution on an open contour in the plane is given. 

The equivalent potential-type Fredholm integral equation of the first kind 

is derived. In particular, Eq. (2) of section 2, arises in the fields of 

electron-optics, potential theory, and electromagnetism [1, 2] in the case 

of the replacement of a harmonic function by single-layer potentials. The 

finite energy condition, and the condition that the potential function tends 

to a constant at infinity are also imposed for the stability of the solution of 

the Dirichlet problem.                                                                                     

It should be noted that many methods [3-11] have been published for the 

solution of such equation, while the goal of the presented paper is to give 

an innovative approach for the numerical solution of this potential–type in 

the case of an open contour in the plane, in such a manner that the 

singularities of the density function disappear upon interpolating it via 

Newton Interpolation in matrix forms.                                                           

Actually, the approximation of the density function is based on replacing 

it by a product of two functions, the first is “badly behaved”; since it 

explicitly represents the singularity of the original singular density 

functions, while the second is a regular unknown function. The regular 

unknown function is approximated by Newton interpolating polynomial of 

degree n  . Furthermore, the parameterization of the open contour 

facilitates the analytical treatment of the weak singularity of the kernel. 

The two argument parametric equations of the parameterized kernel are 

expanded into Taylor polynomial of the first degree about the singular 

parameter. Thus the singularities of the equation are entirely isolated. 

Consequently, the given data function is also expressed in Newton 

interpolant polynomial of the same degree n . In addition, an adaptive 

Gauss–Legendre formula is then applied for the computation of the 

obtained convergent integrals. Thus the required singular density function 

is found by solving a system of algebraic equations that minimizes the 

amount of calculations, and gives excellent results.                                       
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22..  FFoorrmmuullaattiioonn  ooff  tthhee  DDiirriicchhlleett  pprroobblleemm  

Let 2
    be a simple, smooth, and open contour, that satisfies the 

Hölder condition      0 1H ;


   , and   
,

 
   denote the 2-sides of 

  depending on the direction of the normal vector n



 . Furthermore, let 

 a ,b    , where  a ,b  are the end-points of   , and 

   2 2
u x \    is the solution of the Dirichlet problem for the two 

  
,

 
  - dimensional Laplace equation  

2
0  u x ; x \     under the 

Dirichlet condition       u x u x ; xo
 

   , where 

   
1

  0 1
,

u x ,o





     is the given potential on both sides of  . In 

addition to the above mentioned conditions, it is provided that 

  clim u x

x





; c  is a constant to ensure the stability of the solution,  

and the finite energy condition (edge condition) at the end-points of the 

open contour [12], where  C  1 2; i ,i    denotes the two circles of radius 

0   with  centers at the end-points  and a b  respectively. The method 

of boundary integral equations is applied so that the solution  u x of the 

Dirichlet problem for Laplace equation of a mass distribution on an open  

contour in the plane is derived by the expansion [1,12]                                 

 

(1) 

 

 

   
   

    
1 1 1

 
2

u x y ln ln u y u y dso o y
d x , y n d x , yy




   
   
 
 

 

where  y  is the unknown density function of the mass distribution on 

 , that satisfies the integral formula   0y ds y 



 , and can be found as 

the solution of the equivalent Fredholm integral equation of the first kind 

 

(2) 

 

 

 
 

 
1 1

constant ; 
2

y ln ds u x xy o
d x , y




   



 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

____________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

278 

where 

 

(3) 

 

 

      
 

    
1 1 1

 
2 2

u x u y u y ln u y u y dso o o o o y
n d x , yy

   
   




 

33..  CCoommppuuttaattiioonnaall  TTeecchhnniiqquuee    

Consider the integral equation: 

 

(4) 

 

 

       ; x k x , y ds f y yx   



 

Here 2
    is a simple open contour, that satisfies the Hölder condition 

   0 1H ;


   ,  k x , y  is the kernel such that  
 

1
k x , y ln

d x , y
 ; 

where  d x , y  denotes the distance between the two points on  ,  x   

is the undetermined singular density function which is defined on  , and 

   f y C   is the known given potential function. However,   is 

parameterized to get the 2-parametric equations that represents the point 

x  on  ;       ;x x , y y ; a b        

   0  0  x , y ; a b ,                       

and the 2-parametric  equations that represents the point y  on  

      ;x x , y y ; a b                       

   0  0  x , y ; a b ,                        

Therefore, integral Eq. (1) is transformed to 

 

(5) 

 

 

          

b

J K , d f ; a b

a

          

where ,   are the parameters of the two points x , y  on  ,  J   is 

the Jacobian of the parameterized open contour  , such that 
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       
2 2

J x y     . Moreover, the function      is put as 

the product of two functions such as 

 

(6) 

 

 

     u v    

where  u   is the regular unknown function, and    
1

2 21v  



   

expresses the singular behavior of the unknown density  function      

near and at the end-points of the integration domain when 1x   . 

Interpolating  u   in Newton interpolant polynomial of degree n  in a 

matrix form, we get                                                                                         

 

(7) 

 

 

  U Xu     

where  U=
0

n
ui i

 is the row matrix of order  1 1n  , whose entries ui  

are the undetermined Newton’s coefficients, and the matrix X  is the 

column matrix of order  1 1n    such that                                                   

           X 1 0 0 1 0 1 1
T

... ... n                     

Now, by substituting Eq. (7), into Eq. (6) the unknown function becomes a 

regular function and takes the form                                                                

 

(8) 

 

 

  U X    
 

where X  is the column matrix of order   1 1n     

 

(9) 

 

 

 X
0

n
li i

    
 
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and 

 

(10) 

 

 

     

1
12

1 1     10
2

1 0

i

l ; l ii k

k

    




 

      
   

 

Similarly,  f   is expanded in Newton interpolant polynomial of the 

same degree n  in the matrix form                                                                  

 

(11) 

 

 

   Ff      

 

Where          

 

           1 0 0 1 0 1 1

T

.... .. n



           

 

        

 

and  F
0

n
fi i




 is the row matrix of order  1 1n  , whose entries 

fi  can be calculated using the formula 

         00
ii

f f i ! h ; i ,ni    ;      0
0 0f f   , where 

the step-size h  can be evaluated by  0 11h ; i ,ni i     .  

Moreover, the logarithmic singular kernel  
 

1
k x , y ln

d x , y
 , where 

 d x , y  is the distance from the parametric point     x x , y   to the 

parametric point     y x , y  , can be rewritten in the form                       

 

(12) 

 

 

 

         

1
  

2 2
k , ln ; a b

x x y y

  

   

  

  

 

From Eq. (12) it turns out that the singularities of  k x , y  occurs 

when  , and to remedy this difficulty and treat this singular behavior, 

both     x , y   are approximated using Taylor polynomial of the first 
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degree about the singular parameter   . Thus, the following 

approximations are obtained                                                                           

 

(13) 

 

 

                 x x x ; y y y                

By substituting Eq. (13) into Eq. (12), we obtain 

 

(14) 

 

 

       
1 2 2

   k , ln ; a b , R x y
R

    
 

     


 

Finally, substituting Eqs. (8), (11), and (14) into Eq. (2), gives 

 

(15) 

 

 

   U H F   

Here,    H =
0

n
hi i

    
 is the column matrix of order  1 1n   , where 

 hi    can be evaluated by the integral formula 

 

(16) 

 

 

   

     

1
 

2 2
0

b

h l ln d ;i i i
R i

a

R x y ; a b ,i ,ni i i

  
 

  




     


 

Now, if the matrix equation (15) is satisfied at the n -collocation points 

   
0

n
; a bi ii

  


, the following algebraic linear system is obtained 

 

(17) 

 

 

   UH F    0i ,ni i     

Now,  the apdative m  nodes Gauss-Legendre formula 

 

(18) 

 

 

  =

1

b m

f ( x )dx fs s

sa

 



 

where the weights s , and the nodes s  are given by 
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(19) 

 

 

    
  

22
1

  1   2
2 2

1

b a
,s

Ps m s

m
b a b a

s ,m ;s s s

s



 

  






 
    





 

and s  are the roots of Legendre polynomial of degree m ;  that is defined 

on  1  1, , is applied for the computing of the integrals  hi i  since they 

became proper due to the analytical treatment based on the nature of  

Newton interpolating polynomial. Thus, the numerical solution of Eq. (4) 

is now equivalent to the solution of the linear system of algebraic 

equations given by Eq. (17). The unknown matrix U can be found, and 

thereby, the unknown density function     can be obtained by 

substituting into Eqs. (6) and (7).                                                                   
 

44..  CCoommppuuttaattiioonnaall  RReessuullttss  

To verify the presented technique, the numerical solution of a certain 

potential-type Fredholm integral equation of the first kind with a singular 

density (unknown function), and a singular logarithmic kernel (Eq. (20)) is 

obtained. However, the solution is found to be closer to the exact one. 

Tables of the obtained numerical solutions and the graphs are illustrated 

with the absolute error estimation to show the high accuracy of the 

presented method. Consider                                                                            

 

(20) 

 

 

 

1
1

1  1 1 

1

f x ln dx ; - y
x y

  




 

whose exact solution [5] is given by  

 

(21) 

 

 

 
  

 
1

1 2 21   1 1 
2

f x x ; - x
ln



    

From table 1, it can be observed that the obtained solutions by the 

presented technique are closer to the exact one. In table 2, the absolute 

error estimation shows the efficiency of the proposed method. The number 

of collocation points are only two points ( 2n  ), while the number of 
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Gauss–Legendre’s nodes are 8  10  and 12m , , . Here,  E xi i  denotes the 

exact solution.                                                                                                 

 

Table 1:  Numerical solution using Newton interpolation. 

 

i xi  E xi i 8m  10m  12m  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

-0.9000 
-0.8000 
-0.7000 
-0.6000 
-0.5000 
-0.4000 
-0.3000 
-0.2000 
-0.1000 
0.0000 
0.1000 
0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 

1.0535 
0.7654 
0.6430 
0.5740 
0.5303 
0.5011 
0.4814 
0.4687 
0.4615 
0.4592 
0.4615 
0.4687 
0.4814 
0.5011 
0.5303 
0.5740 
0.6430 
0.7654 
1.0535 

1.2016 
0.8434 
0.6864 
0.5954 
0.5362 
0.4958 
0.4679 
0.4493 
0.4383 
0.4339 
0.4358 
0.4442 
0.4601 
0.4849 
0.5219 
0.5767 
0.6620 
0.8102 
1.1502 

1.2720 
0.8917 
0.7248 
0.6277 
0.5644 
0.5210 
0.4908 
0.4704 
0.4579 
0.4524 
0.4535 
0.4614 
0.4769 
0.5017 
0.5390 
0.5947 
0.6816 
0.8329 
1.1811 

1.1793 
0.8337 
0.6837 
0.5975 
0.5422 
0.5050 
0.4801 
0.4642 
0.4558 
0.4540 
0.4585 
0.4697 
0.4885 
0.5167 
0.5576 
0.6175 
0.7098 
0.8693 
1.2343 

 

Table 2: Absolute error estimation, where  1 2E , E , and 3E  are the 

absolute errors for 8  10  and 12m , ,   respectively.                     

i xi 1E 2E 3E 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.0000 
0.1000 
0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 

0.0253 
0.0258 
0.0244 
0.0213 
0.0161 
0.0084 
0.0027 
0.0190 
0.0448 
0.0967 

0.0068 
0.0080 
0.0073 
0.0045 
0.0007 
0.0087 
0.0207 
0.0385 
0.0676 
0.1275 

0.0052 
0.0030 
0.0010 
0.0071 
0.0156 
0.0273 
0.0435 
0.0667 
0.1039 
0.1808 
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Fig. 1: The presented technique for 8m  . 
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Fig. 2: The presented technique for 10m  . 
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Fig. 3: The presented technique for 12m  . 
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Fig. 4: The absolute errors  1 2E , E , and 3E  for 

8  10  and 12m , , respectively. 
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55..  CCoonncclluussiioonn    

A computational technique has been investigated for the numerical 

solution of a certain potential-type Fredholm integral equation of the first 

kind with a singular unknown (density) function at the end-points of the 

integration domain, and has a weakly singular logarithmic kernel. The 

presented technique is based on Newton interpolation in a matrix form, 

and the analytical treatment of the singularities without changing of the 

variables. The singularity of the unknown function was treated by 

considering it as a product of two functions. The first was given in a 

closed form that expresses its singular behavior, while the second, which 

is a regular function, was interpolated using Newton interpolation in a 

matrix form. The singularity of the kernel was treated analytically by 

expanding the two argument parametric functions of the parameterized 

kernel via Taylor polynomial of the first degree about the singular 

parameter. Furthermore, an adaptive Gauss–Legendre formula was 

applied, and matrix algebra was utilized, in such a manner that the 

unknown density function was found by solving a linear system of 

algebraic equations. The given numerical example has demonstrated the 

high accuracy of the presented technique.                                                      

     
 

RReeffeerreenncceess    
[1] 

[2] 

 

[3] 

 

 

[4] 

 

[5] 

 

[6] 

 
 

[7] 

 

 

[8] 

 

 

I. S. Grant, W. R. Phillips, Electromagnetism. John Wiley & Sons, 2013. 

V. S. Vladimirov, Equations of mathematical physics. Nauka, Moscow,      

1881.                                                                                                                

A. Dezhbord, Taher Lotfi, Katayoun Mahdiani, A new efficient method for 

a case of the singular integral equation of the first kind. Journal of 

Computational and Applied Mathematics. 296 (2016) 156-169.                    

B. L. Yung, S. Lee, U. J. Choi, A modified boundary integral method on 

open arcs in the Plane. Computers Math. 31 (1996) 37-43.                           

E. S. Shoukralla, Approximate solution to weakly singular integral 

equations, Journal of appl. Math Modelling. 20 (1996) 800-803.                  

E. Kendall, Atkinson, I. H. Sloan, The numerical solution of first-kind 

logarithmic-kernel integral equations on smooth open arcs. Mathematics 

of Computation. 56 (1991) 119-139.                                                               

G. Schmidt, B. N. Khoromoskij, Boundary integral equations for the 

biharmonic Dirichlet problem on non-smooth domains, Journal of integral 

equations and applications. 11 (1999).                                                            

K. Maleknejad , A. Ostadi, Using Sinc-collocation method for solving 

weakly singular Fredholm integral equations of the first kind, Journal 

Applicable Analysis, 96 (2017) 702-713. 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

____________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

287 

[9] 

 

 

[10] 

 

 

[11] 

 

 

[12] 

 

 

[13] 

 

 

[14] 

 

[15] 

S. Prössdore, J. Saranen, I. H. Sloan, A discrete method for the logarithmic 

kernel integral equations on open arcs, J. Austral. Math. Soc. Ser. B 34 

(1993) 401-418. 

S. Christiansen, E. B. Hansen, Numerical Solution of boundary value 

problem through integral equations, Apple. Math, and Mech., ZAMM. 58 

(1978) 14-25. 

V. Domı́nguez, High-order collocation and quadrature methods for some 

logarithmic kernel integral equations on open arcs, Journal of 

Computational & Applied Mathematics. 161 (2003) 145-159. 

E. S. Shoukralla, S. A. El-Serafi, The Dirichlet Problem for Laplace 

equation for an open boundary, Ain Shams University in Egypt, 

Engineering Bulletin. 25 (1990) 544-551. 

Y. Hayashi, The Dirichlet problem for the two-dimensional Helmholtz 

equations for an open boundary, J. Math. Anal., and Appl. 44 (1973) 489-

530. 

Y. V. Shestopalv, Y. G. Smirnov, E. R. Chernokozhin, Logarithmic 

integral equations electromagnetics, VSP, 2000.  

Y.V. Shestopalov, E.V. Chernokozhin, On the solution to integral 

equations with a logarithmic singularity of the kernel on several intervals 

of integration: elements of the spectral theory, Visnek, Kharkov National 

university, Ukraine. 1058 (2013).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

____________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

288 

 

 
 

 

 

 

الملخص باللغة العربية 

 

 

 

 

 الملخص باللغة العربية


