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Abstract—Compressive sensing (CS) has recently gained a 

lot of attention in the domains of applied mathematics, 

computer science, and electrical engineering by offering 

compression of data below the Nyquist rate. The particle 

swarm optimization (PSO) reconstruction algorithm is 

considered one of the most widely used evolutionary 

optimization techniques in CS. The self-tuned PSO parameters 

control can greatly improve its performance. In this paper, we 

propose a self-tuned PSO parameter control based on a 

sigmoid function in the CS framework. In the proposed 

approach, PSO parameters are adjusted by the evaluation at 

each iteration. The proposed self-tuned PSO parameter control 

approach involves two PSO parameters. First, acceleration 

coefficients, which are considered very effective parameters in 

enhancing the performance of the algorithm, second, inertia 

weight, which is used to accelerate the movement of particles 

towards the optimum point or slow down the particles so that 

they converge to the optimum. In contrast to conventional 

PSO, the proposed self-tuned PSO parameters control 

algorithm governs the convergence rate, resulting in a fast 

convergence to an optimal solution and very precise recovery 

of the original signal. A simulation study validates the 

effectiveness of the proposed method as compared to the 

conventional PSO algorithm.  

Keywords—Sigmoid function, PSO, Reconstruction 

Algorithms, Compressive Sensing, Cognitive-IOT 

I. INTRODUCTION 

Compressive sensing (CS) is a signal processing 
technique that allows signals to be acquired with fewer 
samples [1, 2]. CS is based on the idea that we can 
represent many signals using only a few non-zero 
coefficients in a suitable basis or dictionary. Sparsity and 
incoherence are two key principles of CS. Sparsity is 
fundamental in the theory of CS, which works against the 
principle of the conventional Nyquist sampling 
theorem. CS exploits the fact that the sparse signal has less 
information relative to its length, so it can be recovered 
accurately from a small number of incoherent 
measurements. Mathematically, a signal x ∈ R

N
  is  k-

sparse when 0  ≤  k  ≤ N. Where is   norm 
defined as   = number of non-zeros 

component of . The compressed signal can be represented 
by the following equation: 

                                                                                

(1) 

 

where the sensing matrix Ф={φ1, φ2,…. φN} is M × N (M 

<< N) and y ∈ R
M

 is a measurement vector. The sensing 

matrix Ф must satisfy the restricted isometric property 

(RIP) of order k so that the sensing process does not 

damage the information stored in the original signal. 

 

               (1-ẟ) 2
2≤  2

2 ≤ (1+ẟ) 2
2                      

(2) 
 

where: ẟ € (0,1) is the isometric constant. The goal of 

compressive sensing is to design the matrix Ф and a 

reconstruction algorithm so that for k-sparse signals we 

require only a “small” number of measurements. The 

underdetermined system of linear equations described by 

(1) can have infinitely many solutions indicating that very 

different signals may lead to the same measurements. So 

for a given sensing matrix Ф ∈ RM×N and measurement 

vector y ∈ RM, finding the maximally sparse solution is an 

ill-conditioned problem. The sparse reconstruction 

problem can be modeled as 

 

             '=minx 2
2  subject to ≤ k,               

(3)  

 

where ' is the sparsest possible solution. Sparse signal 
recovery such as  minimization use sparsity constraint as 
regularized in order to find an estimated solution to (1) 
with limited non-zero entries. Using the non-convex 
problem defined by (3) to find the sparsest possible 
solution is computationally impossible as it implicates an 
exhaustive search for k non-zero values of the recovered 
vector. 

In the CS framework, recovering the original signal 
from the compressed data represents a significant 
challenge. In the literature, many sparse signal 
reconstruction methods have already been presented [12, 
13]. They can be classified into three major categories: 
convex relaxation, non-convex relaxation, and greedy 
algorithms. Using the non-convex problem defined by (3) 
to find the sparsest possible solution is hard to solve 
exactly in a reasonable time. Linearization techniques, in 
which the objectives and constraints are linearized, are 
another alternative to minimizing approaches. Some 
variables are kept fixed in a cyclical manner when using 
cyclical minimization procedures (or approximated by a 
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convex function). Particle swarm optimization (PSO) is 
among the most evolutionary optimization methods. 

 Swarm intelligence algorithms are extremely helpful 
and effective for solving optimization problems such as 
non-convex problems. Adaptation of PSO parameters has 
been developed to prevent local optimization trapping. It is 
widely known that control parameters balance between 
global and local searches throughout the searching process, 
and therefore they play a vital role in successfully finding 
the optimal solution [9], [10]. The acceleration coefficients 
and inertia weight parameters act as the main two control 
parameters in the PSO algorithm, which have a substantial 
impact on the performance of swarm intelligence 
algorithms. Until now, some PSO variations have 
concentrated on changing the three control parameters 
described above. In [5] and [6], a linear-decreasing-inertia-
weight-based PSO (PSO-LDIW) algorithm has been 
proposed where the inertia weight is updated in a time-
varying manner. The PSO-LDIW algorithm concentrates 
on the selection of the inertia weight, where the updating 
equation of the inertia weight w at the each iteration is 
given as follows: 

 

In [7], a random inertia weight value (PSO-RIW) is used to 

enable the PSO to track the optima in a dynamic 

environment such as the inertia weight is given by 

 

where rand() is a random number in [0,1]. Based on (5), 

the inertia weight w is a uniform random variable in the 

range [0.5, 1]. 

 

In this paper, we present an adaptive PSO parameter 

control technique that relies on self-tuned parameter 

control for the two main effective parameters in the PSO 

algorithm, the inertia weight and the acceleration 

coefficients by using sigmoid functions of the current 

iterative generation for each parameter. The proposed 

adaptive parameter control is iteratively optimized until it 

finds the optimal solution with improved convergence rate. 

During each iteration, we evaluate the particle swarm by 

comparing the current best particle solution and the 

previous best particle solution to a certain threshold. Once 

the threshold is reached, we can stop the process and 

choose the optimum solution, which means we will not see 

any updates to the best solution in a number of iterations. 

If the algorithm does not reach a threshold through 

iterations, we choose the optimum solution when we reach 

the maximum number of iterations. The proposed 

algorithm can maintain the population diversity by 

adaptively adjusting the parameter control through the 

optimization process. Finally, the efficiency of the 

proposed adaptive PSO parameter control is validated 

experimentally by exactly recovering a K-sparse signal 

from only a small number of compressed measurements 
 

II. RECONSTRUCTION ALGORITHMS  

In the CS framework, the main purpose is to 
reconstruct a sparsely sampled compressed signal by 
solving an undetermined set of linear equations with a 
defined set of solutions.  Recovering the original signal 
from compressed data has been one of the most 
challenging tasks in CS research. Furthermore, choosing 
the right reconstruction algorithm for every application and 
improving the reconstruction algorithm's performance with 
fewer computational steps are considered the primary 
objectives for researchers today. Based on the CS method, 
the algorithms for the reconstruction of the original sparse 
signal can be broadly classified into three main categories:  
convex relaxation, non-convex relaxation, and greedy 
algorithms. 

A. Convex Relaxation 

These class algorithms use linear programming [14] to 
solve a convex optimization problem to obtain 
reconstruction. Some examples of such algorithms include 
Basis Pursuit [15], Basis Pursuit De-Noising [15], Least 
Absolute Shrinkage, and Selection Operator (LASSO) 
[16]. Basis pursuit is the mathematical optimization of a 
problem in the form of 

                minx 1    subject to  
 

These types are most commonly utilized when the signal 

of the linear equation  is underdetermined. Because 

this approach is more complicated and time-consuming, it 

cannot be used in time-sensitive reconstruction 

applications. 

 

B. Non- Convex Relaxation 

      There are many practical problems of importance that 

are not convex, and they can be challenging (if not 

impossible) to solve exactly in a reasonable amount of 

time. Hence the idea of using heuristic algorithms, which 

may or may not produce desired solutions. Optimization is 

carried out with some variables held fixed in a cyclical 

manner, and linearization techniques are used when 

objectives and constraints are linearized (or approximated 

by convex functions). There are many algorithms proposed 

in literature that use this technique like Focal 

Underdetermined System Solution (FOCUSS) [17], Sparse 

Baysian Learning algorithms [18], which are some 

examples of such algorithms. A search algorithm (such as 

a genetic algorithm and PSO) is another technique that 

relies on simple rules for updating the solution. 

 

C. Greedy Algorithm  

      A Greedy Algorithm is a problem-solving method 

based on making the most local optimal decision at each 

step and aiming for a global optimal response by finding 

the answer, step by step, iteratively. Sensing matrix  

columns are selected in a greedy manner. A column of the 

sensing matrix  that correlates the most with it is chosen 



 102 

at each iteration. Additionally, the least square error is 

minimized with each iteration.  The most widely utilized 

greedy algorithms are Matching Pursuit [19] and 

Orthogonal Matching Pursuits (OMP) [20]. Improved 

versions of (OMP) such as Regularized OMP (ROMP) 

[21], Stagewise OMP (StOMP) [22], Compressive 

Sampling Matching Pursuits (CoSaMP) [23], Subspace 

Pursuits [24], Gradient Pursuits (GP) [25], Orthogonal 

Multiple Matching Pursuit (26), and Reducing Iteration 

OMP (RIOMP) [27]. 

 

 

III. PARTICLE SWARM OPTIMIZATION  

PSO is a population based algorithm which was 
originally introduced by Kennedy and Eberhart [1]. This 
algorithm is a kind of optimized global search algorithm 
and is a relatively new, modern, and powerful optimization  
method that has been experimentally shown to perform 
well on numerous of these optimization problems. It is 
widely employed to find the global optimum solution in a 
complex search, the main benefits of PSO are that it is easy 
to implement and requires few parameters to be adjusted. 
PSO is derived from the study of bird foraging behavior: a 
group of birds are looking for food randomly. If there is 
only one piece of food in this area, the most basic and 
effective search strategy is to look for food in the closest 
location to the food. 

The basic idea behind PSO is that when it is used to 
solve optimization problems, the solution corresponds to 
the position of a bird (particle) in the search space. Not 
only does the particle have its own position and velocity, 
but it also has a suitable value determined by the objective 
function. Each particle remembers and follows the most 
recent optimal particle while searching the solution space: 
Each search (iteration) includes some random variables. 
The particle updates its position in each iteration by 
tracking two "extreme points": The first is the best solution 
discovered by the particle itself (i.e., the individual 
extreme point (Pbest)) and the second is the extreme point 
(Gbest) of the entire particle swarm.  

A. Basic Model of PSO Algorithm  

PSO treats each potential solution to an optimization 
problem as a bird, also known as a particle. The set of 
particles, also known as a swarm, each particle has 
memory and can adjust its own motion trajectory based on 
its current position, information sharing among peers, and 
the best position experienced in memory,  the particle 
continues to approach the best position until it reaches the 
optimal position. At each iteration, the position and 
velocity of the particles are updated according to the 
following equations: 





                                        (8) 

 

Where   indicates the iteration number, w denotes the 

inertia weight,  represents the Pbest of particle i, is 

the Gbest found by the entire swarm also is known as 

global best ,c1 and c2 are acceleration coefficients, also 

known as convergence factors and r1 and r2 are random 

numbers distributed in the interval [0 , 1]. Fig. 1 shows the 

PSO algorithm flow with details of each step. 

 

Fig. 1 Block diagram for PSO algorithm flow 

 

IV. PROPOSED SIGMOID FUNCTION BASED ADAPTIVE PSO 

ALGORITHM 

    Parameter adjustment for swarm intelligence algorithms 

is difficult due to the following challenges. First, the 

parameter control in swarm intelligence algorithms not 

only varies according to different optimization problems. 

Second, while it may be obvious whether a parameter 

should be increased or decreased based on the state of 

evolution, determining the extent to which the parameter 

should be adjusted is a difficult task. Third, avoiding 

introducing new parameters while increasing the time and 

space complexity is an interesting problem. In this paper, 

we present an adaptive PSO parameter control technique 

that has a significant impact on the PSO algorithm's 

enhancement and performance. We do that by applying a 

sigmoid function to both of the primary PSO parameters: 

inertia weight and acceleration coefficients. These 

parameters balance global and local searches throughout 

Evaluate initial fitness for initial 

population 

Update Velocity and position of each 

particle 

Evaluate fitness of each particle and 

update Pbest and Gbest 

t=t+1 

Choose the optimal solution 

Initialize population of particles with 

position and velocity 
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iteration? 
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No 
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the searching process, which plays a vital role in 

successfully finding the optimal solution. Acceleration 

coefficients and inertia weight are adaptively adjusted as 

the iteration goes. In general, balancing between local and 

global search processes will improve PSO performance. 

This trade-off between local and global is influenced by 

modifying and tuning some parameters, namely current 

motion, inertia weight, cognitive and social coefficients. 

 

A. Sigmoid function-based adaptive acceleration 

coefficients  

The sigmoid-based acceleration coefficients are 
designed to strike a balance between early-stage global 
search ability and late-stage global convergence. Most of 
the existing PSO variants only tune the acceleration 
coefficients in a time-varying manner without taking the 
information of the population evolution into account [3,4]. 
As shown (7) and (8), the velocity of the particle updates is 
affected by the distances between the particles and their 
own Pbest and Gbest. In this case, it is reasonable to tune 
the acceleration coefficient based on the distances between 
each individual particle and its Pbest and Gbest, our main 
motivation is to accelerate the particles so that they can 
find the optimal solution as quickly as possible, thereby 
increasing the convergence rate. Unlike the time-varying 
updating strategy, the acceleration coefficients are adjusted 
based on the particle's distance from its Gbest and Pbest. If 
the particle is far away from its Pbest and Gbest, an 
acceleration coefficient with a relatively large value is used 
to accelerate it. However, the value of the acceleration 
coefficient is limited in an appropriate range to avoid 
premature convergence, which means that the velocity 
should be bounded to guarantee the searching capability of 
the algorithm. 

Motivated by the previous discussions, we believe that an 

adaptive weighting updating function is appropriate to 

describe the relationship between the acceleration 

coefficient and the distances (from the particle to its Pbest 

and Gbest). In other words, the updates to the former 

acceleration coefficients should be adaptive to the latter 

distances, fully justifying the velocity of the particle 

movements toward the global optimum. From a 

mathematical standpoint, the proposed adaptive weighting 

updating rule is as follows: 

 

                                                  (9)                             

                                        (10) 

 

Where the function  in (9) and (10) represents the 

adaptive PSO parameter updating function, 
Specifically, is the distance between the particle 

and its Pbest for the cognitive acceleration coefficient. For 
the social acceleration coefficient, indicates the 

distance between the particle and the Gbest. Remark; 

 and  are defined by 

 

                  ( ) )                              (11) 

( ) )                              (12) 

which denote the distances from the particle  to its Pbest 

and Gbest at the  th iteration, respectively, so we can 

calculate , At each iteration as follows:  

 

                       

                                                                                         (13)        

                      

 
where a denotes the steepness of the curve which is a 

constant value, b represents the peak value of the curve, c 
represents the abscissa value of the central point of the 
curve, d is a positive constant value. 

In search of suitable updating functions that are 
monotonically increasing, uniformly bounded, and inspired 
by neural network activation functions, we found some 
popular activation functions for neural networks, such as 
step functions, sigmoid functions and others, among which 
we decided to choose the sigmoid function as the adaptive 
parameter updating function for the following reasons: 

 The sigmoid function is monotonic and bounded. 

 The sigmoid function curve is S-shaped, avoiding 
undesirable abrupt changes in the parameter 
control. 

 The sigmoid function is smooth and differentiable, 
reflecting the adaptive/dynamic nature of the 
weight updating iteration by iteration. 

According to the above discussion in this paper, a sigmoid 
function is employed to tune the acceleration coefficients 
as follows: 

                                       

(14) 

 

Where a, b, c and d are constants, D is the distance 
between the particle and it's Pbest for the cognitive 
acceleration coefficient. For the social acceleration 
coefficient, D indicates the distance between the particle 
and the Gbest.  

B. Sigmoid function-based adaptive inertia weight  

    The inertia weight (w) adjusts the particle's momentum 

by weighting the contribution of the previous velocity. The 

velocity and position update equations with an inertia 

weight are described in Equations (7) and (8). There are 

two different methods for calculating the inertia weight 

value: decreasing and increasing. In order to decrease, a 

large initial value of inertia weight is reduced linearly or 

nonlinearly to a small value. A large inertia weight 

facilitates in a global search, whereas a small inertia 

weight facilitates  in a local search. In order to decrease, a 

small inertia weight increase linearly or non-linearly to a 

larger value. A large inertia weight has a greater chance of 

convergence, which implies that a larger inertia weight at 

the end of the search will foster the ability to converge. A 

large inertia weight has  a greater chance of convergence, 

which implies that a larger inertia weight at the end of the 
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search will foster the ability to converge. There are 

numerous  methods in nonlinear approaches such as 

tracking and dynamic system [9] and constriction factor 

[8].Shi suggested that a linear decrease in inertia weight 

value from 0.9 to 0.4 [5, 6]. In [9], Y. Zheng, et. al. 

suggested that an inertia weight value beginning from 0.4 

linearly increasing to 0.9. 

 

     In this paper, we propose a new inertia weight 

modulated with a sigmoid function for improving PSO 

performance. This work was inspired by the excellent 

performance shown by the sigmoid decreasing inertia 

weight based on detailed observation and analysis. We 

employed sigmoid decreasing inertia weight ensure faster 

convergence ability and a near optimum solution. 

Afterwards, a small inertia weight is retained to facilitate a 

local search in the final part of the PSO process. The basic 

of sigmoid function is given as: 

 

                                                                      (15) 

 

                                       (16) 

 

                                                     (17)                                  

 

Where: is inertia weight at  iteration, and 

are inertia weight at the start and inertia weight at 

the end of a given run, respectively. Furthermore, s is the 

constant to adjust sharpness of the function, gen is the 

maximum number of generations to run and n is the 

constant to set partition of sigmoid function. We set 

= 0.4, = 0.9, According to the characteristics 

of the sigmoid function and experimental experience 

 

V. SIMULATION RESULTS AND DISCUSSION  

       In this paper, the proposed adaptive PSO algorithm is 

compared with some currently popular PSO algorithms 

including the conventional PSO algorithm, the PSO-LDIW 

algorithm [5, 6] and the PSO-RIW algorithm [7]. For all of 

the algorithms, numerical simulations are performed using 

random measurement matrix Ф ∈ R256 x 512 with 

Gaussian distribution. The rows represent measurements 

and its columns are equal to the size of sparse signal. The k 

sparse test signal ∈ R256, with k = 85 having random 

magnitudes and random non-zeros elements indices is 

utilized to perform sparse signal reconstruction. This test 

signal is compressively sampled to get observation vector 

 ∈ R256. For acceleration coefficients PSO 

parameter when using sigmoid function defined by (13), 

according to the characteristics of the sigmoid function and 

experimental experience we found that best values for 

parameters in (13) are when setting the follows values 

b=0.5; c=0; d=1.5; a = 0.000035. For inertia weight PSO 

parameter when using sigmoid function defined by (16) we 

set = 0.4, = 0.9. The proposed adaptive PSO 

algorithm performance is measured by mean square error 

(MSE) at every iteration and compared to conventional 

PSO. 

 

                                                             (18) 

 

Where  is the recovered signal and  is the original 

signal. The stopping criterion is set as the algorithm finds 

the globally optimal solution within the threshold 

condition. 

 

Our goal is to arrive at the optimal global solution once 

one of the following two conditions is met: 1) we have 

reached the maximum number of iterations. 2) The 

threshold condition has been met. The threshold is 

calculated at each iteration by comparing the current best 

particle solution to the previous best particle solution. 

When the threshold is less than 10
-12

, we can stop the 

process and choose the optimum solution. In this case, a 

smaller number of iterations indicate better convergence 

performance of the PSO algorithm. To avoid random 

phenomena, we repeated the experiment for 20 times. 

 

Fig.2 shows the cost function of the proposed adaptive 

PSO algorithm and the conventional PSO algorithm versus 

number of iterations. From Fig. 2, initially both algorithms 

have the same cost function, then the proposed adaptive 

PSO algorithm rapidly decreases, whereas the 

conventional PSO objective function gets stuck in a local 

minimum.  

 

 

Fig. 2 Cost function of the proposed adaptive PSO algorithm, PSO-RIW, 
Conventional PSO and PSO-LDIW. 

 

 

From Fig.3, it is obvious from the simulation results that 

the proposed adaptive PSO parameter control algorithm 

not only converges faster than PSO-LDIW, PSO-RIW and 

conventional PSO, but also achieves less MSE.   

 

 

Fig. 3 MSE comparison between the proposed algorithm, PSO-RIW, 

Conventional PSO and PSO-LDIW. 
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Conventional PSO recovered signal is shown Fig. 4, 

demonstrating that there is large difference between the 

original signal and the reconstructed signal. 

 

Fig. 5 shows sparse signal recovery using our proposed 

PSO adaptive parameter technique, demonstrating that the 

recovered signal is quite close to the original signal, 

implying that it was recovered almost exactly. The 

recovered sparse signal using the proposed PSO adaptive 

parameter not only recovers correct amplitudes of sparse 

signal but also is very precise in finding the support of the 

signal. 

 

Fig. 4 Signal recovery using conventional PSO.  

 

 

 
 

Fig. 5 Signal recovery using the proposed PSO parameters control 
algorithm. 

 

From the simulation results, it is obvious that the proposed 

adaptive PSO algorithm not only converges faster than 

conventional PSO, also achieves less MSE and recovers k-

sparse signals with great precision. 
 

VI. CONCLUSION  

        In this paper, we proposed a self-tuned PSO 

parameters control approach based on using the sigmoid 

function. The proposed algorithm adaptively adjusts the 

PSO inertia weight and acceleration coefficient parameters 

by employing the sigmoid function of the current iterative 

generation for each parameter, allowing each parameter to 

tune its value at each iteration for quick finding an optimal 

solution. By employing the sigmoid function for the 

acceleration coefficients parameter. The acceleration 

coefficients parameter is adaptively adjusted based on the 

distance from the particle and its Pbest and Gbest values. 

For the inertia weight parameter, using a sigmoid function 

enabled more exploration and prevented a premature 

convergence. 

 for you. 

 

       Simulation results show that the proposed self-tuned 

PSO parameters control algorithm has high performance, 

less errors, and fast convergence to an optimal solution. In 

our future research directions, we plan to implement the 

proposed algorithm in a real application to further validate 

the results.  
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